Дипломная работа: Методика оптимизации структуры и параметров библиотечной автоматизированной системы обеспечения информационными услугами
Рис. 1.4 - Простейший поток событий
Рассмотрим на оси простейший поток событий (рис. 1.4) как неограниченную последовательность случайных точек. Выделим произвольный интервал времени длиной . Как уже отмечалось, если поток событий является простейшим, то число событий, попадающих на интервал т, распределено по закону Пуассона с математическим ожиданием
(1.18)
где - плотность потока.
В соответствии с законом Пуассона вероятность того, что за время произойдет ровно т событий, равна
(1.19)
Тогда вероятность того, что не произойдет ни одного события, будет
(1.20)
Отсюда вероятность того, что за время произойдет хотя бы одно событие, равна
(1.21)
Важной характеристикой потока является закон распределения длин интервалов между событиями. Пусть - случайная длина интервала времени между двумя произвольными соседними событиями в простейшем потоке (рис. 1.4) и - искомый закон распределения продолжительности временного интервала между последовательными событиями. С другой стороны, вероятность может быть интерпретирована как вероятность появления хотя бы одного события в течение временного интервала продолжительностью t, начинающегося в момент поступления в систему некоторого события.
Поскольку простейший поток не обладает последействием, наличие события в начале интервала t не оказывает никакого влияния на вероятность появления событий в дальнейшем. Поэтому вероятность может быть вычислена по формуле
(1.22)
откуда, имея в виду (1.20),
(1.23)
Дифференцируя (1.23), находим плотность распределения длин интервалов между последовательными событиями
(1.24)
Закон распределения с плотностью (1.24) называется показательным с параметром λ.
1.3.3 Время обслуживания
Как уже отмечалось, эффективность системы обслуживания зависит не только от характеристик входящего потока, но и от производительности самой системы обслуживания, т. е. от числа каналов и быстродействия каждого из них. В связи с этим время обслуживания одной заявки Тоб является важной характеристикой системы, В силу самых различных причин время обслуживания в реальных системах может меняться от одного требования к другому. Поэтому в общем случае разумно считать время обслуживания случайной величиной.
Введем закон распределения времени обслуживания
(1.25)
и плотность его распределения
(1.26)
Для практики особый интерес представляет случай, когда продолжительность времени обслуживания имеет показательный закон распределения, т. е.
(1.27)
Параметр имеет простой физический смысл. Величина, обратная , равна математическому ожиданию времени обслуживания.
Важная роль, которую играет показательный закон времени обслуживания, связана с уже упоминавшимся свойством этого закона. Применительно к данному случаю оно формулируется следующим образом: если в какой-то момент происходит обслуживание требования, то закон распределения оставшегося времени обслуживания не зависит от того, сколько времени обслуживание уже продолжалось.
Таким образом, процесс обслуживания заявок не обладает последействием и поэтому для его анализа может быть использован аппарат теории марковских процессов.