Дипломная работа: Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа
- сопоставительный анализ школьных учебников различных авторов;
- опытное преподавание;
- наблюдение за учащимися во время проведения занятий.
Материалы данной исследовательской работы имеют практическую значимость и могут быть использованы преподавателями при изложении темы «Тригонометрические функции» в курсе алгебры и математического анализа в 10-11 классах.
§ 1. Общие вопросы изучения тригонометрических функций в школьном курсе
Во введении говорилось о необходимости изучения тригонометрических функций числового аргумента в школьном курсе алгебре и математического анализа. Что же обуславливает данную необходимость?
Итак, основными целями изучения тригонометрических функций числового аргумента являются:
1) ознакомление учащихся с новым видом трансцендентных функций;
2) развитие навыков вычислительной практики (работа с трансцендентными функциями зачастую требует громоздких вычислений);
3) наглядная иллюстрация всех основных свойств функций (в особенности периодичности);
4) установление межпредметных связей с практикой (изучение колебаний маятника, электрического тока, волновой теории света невозможны без знаний о тригонометрических функциях);
5) развитие логического мышления (обилие формул порождает необходимость преобразований не алгебраического характера, которые носят исследовательский характер).
В изучении тригонометрических функций можно выделить следующие этапы:
I. Первое знакомство с тригонометрическими функциями углового аргумента в геометрии. Значение аргумента рассматривается в промежутке (0о ;90о ). На этом этапе учащиеся узнают, что sin, сos, tg и ctg угла зависят от его градусной меры, знакомятся с табличными значениями, основным тригонометрическим тождеством и некоторыми формулами приведения.
II. Обобщение понятий синуса, косинуса, тангенса и котангенса для углов (0о ;180о ). На этом этапе рассматривается взаимосвязь тригонометрических функций и координат точки на плоскости, доказываются теоремы синусов и косинусов, рассматривается вопрос решения треугольников с помощью тригонометрических соотношений.
Отметим, что существует несколько способов определения тригонометрических функций. Их можно подразделить на две группы: аналитические и геометрические. К аналитическим способам относят определение функции у = sin х как решения дифференциального уравнения f '' (х)=-c*f(х) или как сумму степенного ряда sin х = х – х3 /3!+ х5 /5! – …
К геометрическим способам относят определение тригонометрических функций на основе проекций и координат радиус-вектора, определение через соотношения сторон прямоугольного треугольника и определения с помощью числовой окружности. В школьном курсе предпочтение отдается геометрическим способам в силу их простоты и наглядности.
Отметим, что изучение тригонометрических функций в школьном курсе имеет некоторые особенности. Во-первых, до изучения тригонометрических функций, рассматривались функции вида у= f( x) , где х и у – некоторые действительные числа, здесь же - углу ставится в соответствие число, что является несколько непривычным для учащихся. Кроме того, раньше все функции задавались формулами, в которых явным образом был указан порядок действий над значениями аргумента для получения значений функции. Теперь же учащиеся сталкиваются с функциями, заданными таблично.
Таким образом, изучая тригонометрические функции, учащиеся лучше начинают разбираться в сущности самого понятия функции. Они начинают осознавать, что функцией может быть зависимость между любыми множествами объектов, даже если они имеют различную природу (лишь бы каждому значению аргумента соответствовало единственное значение функции).
§ 2. Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках
В настоящее время вопросы тригонометрии изучаются в 10-11 классах в рамках 85 - часового курса "Алгебра и начала анализа". В разных вариантах тематических планов, опирающихся на учебники разных авторов, отводится от 15 до 28 часов; при этом в основном ставятся следующие цели:
-ввести понятие синуса, косинуса, тангенса и котангенса для произвольного угла;
- систематизировать, обобщить и расширить уже имеющиеся у учащихся знания о тригонометрических функциях углового аргумента;
- изучить свойства тригонометрических функций;
- научить учащихся строить графики тригонометрических функций и выполнять некоторые преобразования этих графиков.
Проанализируем с точки зрения реализации вышеперечисленных целей те учебники, которые наиболее распространенны в общеобразовательных школах, а именно учебники [16], [2], [3], [11].
Прежде всего, отметим некоторые особенности этих учебников как методических пособий в целом, а не по данной теме. Вообще, данные учебники дают цельное и полное представление о школьном курсе алгебры и начала анализа, отвечают требованиям обязательного минимума содержания образования. Но каждый из них имеет свои особенности. Учебник [16], например, отличается более доступным для школьников, по сравнению с остальными учебниками, изложением теоретического материала, которое ведется очень подробно, обстоятельно и достаточно живым литературным языком, наличием большого числа примеров с подробными решениями. Построение всего курса осуществляется на основе приоритетности функционально-графической линии. Учебник [11] имеет прикладную направленность, содержание отличается большей научностью и близостью к математическому анализу, язык изложения в большей мере научен, чем доступен. Теоретический материал изложен достаточно кратко и лаконично. Учебник [3] также имеет прикладную направленность, но в отличие от [11] ориентирован на физические приложения математических знаний и умений. В конце учебника представлены несколько лабораторных работ, например, «Построение математической модели механического движения». В конце учебника весь изученный материал представлен в виде схем и таблиц, что удобно не только ученику при подготовке к какому-либо контрольному мероприятию, но и учителю при подготовке к уроку или к системе уроков. Также среди достоинств этого учебника стоит отметить и тот факт, что каждая глава открывается вводной беседой, подготавливающей появление новых основных понятий, и заключительной беседой, которая включает в себя сведения, полезные для учащихся, интересующихся математикой.
Ну, а учебник [2] по сравнению с другими изобилует большим количеством цитат и шуточных математических рисунков. Это, несомненно, развивает математический кругозор учащихся, но, что касается содержательной стороны этого учебника, то, по моему мнению, он больше подойдет для обучения математике в профильных (не математических) классах.
Перейдем канализу изложения конкретной темы «Тригонометрические функции» в данных учебниках. Напомним, что в школьном курсе математики в разные годы использовались разные варианты введения тригонометрических функций: при помощи тригонометрического круга, при помощи проекции и некоторые другие.
В современных учебных пособиях предпочтение отдается определению с помощью единичной окружности. При этом только в [16] уделено достаточное внимание работе с числовой окружностью как с самостоятельным объектом изучения, и это является одним из достоинств этого учебника.
Слишком поспешное введение понятий синуса и косинуса «по окружности» приводит к трудностям при дальнейшем обучении: многие учащиеся испытывают затруднения с геометрическим истолкованием «тригонометрического языка». Таким образом, не получается создать надежный фундамент для успешного изучения материала.
В учебнике [16] на работу с числовой окружностью отводится 5 часов, что составляет почти 20% от 28 запланированных часов на изучение всей темы «Тригонометрические функции». Вообще говоря, здесь рассматриваются две математические модели: «числовая окружность» и «числовая окружность на координатной плоскости». То есть учащиеся обучаются работать одновременно в двух системах координат: в прямоугольной декартовой и криволинейной. Это поможет им в дальнейшем, когда понятия синуса и косинуса угла будут вводиться через координаты.