Дипломная работа: Методика расчета и оптимизации ячеек памяти низковольтовых последовательных ЭСППЗУ
В схемах памяти используется двухтранзисторная ячейка. Дополнительный транзистор вводится для изоляции ячейки от воздействия сигналов соседних ячеек во время циклов записи/стирания.
В данной работе рассматривается анализ и моделирование режимов записи/стирания, учитывая эффекты, которые возникают во время стирания.
Рисунок 5
3.1 Упрощенная модель ячейки памяти
Для того чтобы получить представления о работе ячейки используется упрощенная модель эквивалентной схемы прибора, представленная на рисунке 6. Более детальный анализ будет рассмотрен в главе 3.2.
Плотность тока текущего через тонкий окисел приближенно вычисляется при помощи уравнения Фаулера-Нордхайма:
Jtun = aEtun * (exp ( -b/Etun )); (1)
где Etyn это электрическое поле в окисле, а a и b - константы. Электрическое поле в тонком окисле рассчитывается так:
Etyn = êVtun ê/Xtun ; (2)
где Vtun это напряжение туннелирования через окисел, а Xtun это толщина тонкого окисла. Напряжение туннелирования может быть рассчитано через емкостную эквивалентную схему ячейки
Рисунок 6
3.1.1 Расчет Vtun
Cpp это емкость между плавающим и управляющим затвором, Ct u n это емкость тонкого окисла, Cgox это емкость подзатворного окисла между плавающим затвором и подложкой, Qfg это заряд, накопившийся на плавающем затворе. Vtun может быть рассчитан для электрически нейтрального затвора по простому соотношению коэффициентов:
êVtun êзапись = Vg * Kw ; (3)
Где Kw = Cpp /(Cpp + Cgox + Ctun ); (4)
и êVtun êстирание = Vd * Ke ; (5)
где Ke = 1 - (Ctun /(Cpp + Cgox + Ctyn ); (6)
где Vg и Vd напряжения на затворе и истоке соответственно, а коэффициенты Ke и Kw обозначают напряжение, которое проходить сквозь тонкий окисел при стирании и записи соответственно. Формулы (3) и (5) справедливы, только если Qfg =0. Во время записи сохраненный на плавающем затворе потенциал понижает пороговое напряжение тонкого окисла согласно следующей формуле:
êVtun êзапись = Vg * Kw + (Qfg /(Cpp + Cgox + Ctyn ) (3’)
Во время стирания отрицательный начальный потенциал плавающего затвора повышает пороговое напряжение тонкого окисла согласно соотношению:
êVtun êстирание = Vd * Ke – (Qfg /(Cpp + Cgox + Ctyn ); (5’)
После завершения операции стирания, когда затвор заряжен положительно последний коэффициент уравнения (5) понижает напряжение потенциал тонкого окисла.
3.1.2 Расчет пороговых напряжений
Начальное пороговое напряжение ячейки, которое соответствует Qfg =0, обозначается как Vti . Начальный заряд смешает порог согласно соотношению:
DVti = -Qfg /Cpp (7)
Используя соотношения (3') и (5') для определения Qfg при снятии импульса записи/стирания пороговые напряжения определяются так:
Vtw = Vti - Qfg /Cpp = Vti + Vg (1 - (V’tun /Kw * Vg )) (8)
Vte = Vti - Qfg /Cpp = Vti - Vd (Ke /Kw - (V’tun /Kw * Vd )) (9)
Здесь Vtw это порог записи ячейки, а Vte это порог стирания ячейки.Vg и Vd это амплитуды импульсов записи и стирания соответственно, а V’tun это напряжение в тонком окисле после снятия импульса. Предположим, что импульс записи/стирания по времени достаточно длинный, тогда электрическое поле в тонком окисле уменьшится до значений близких 1*107 В/см. При такой напряженности поля туннелирование практически прекращается. Приближенное значение Vtun может быть получено из выражения (2) и подставлено в (8) и (9) для получения приближенных значений окна программирования ячейки, зависимости параметров ячейки и напряжения программирования. Типичные результаты представлены графиками на рисунке 7.
Для того чтобы увеличить окно ячейки нужно увеличить толщину тонкого окисла и напряжение записи/стирания, причем значения связывающих коэффициентов должны быть максимально приближены друг к другу. Оба связывающих коэффициента должны увеличиваться при уменьшении Ctun и увеличении Cpp . При увеличении толщины тонкого окисла это обычно достигается за счет уменьшения площади тонкого окисла и внедрения дополнительной поликремниевой области перекрытия в транзисторе ячейки. Типичное значение связующих коэффициентов равно 0,7, причем Ke всегда больше Kw . Увеличение емкости подзатворного окисла Cgox увеличивает Ke , но уменьшает Kw .