Дипломная работа: Моделирование сети кластеризации данных в MATLAB NEURAL NETWORK TOOL

В качестве критерия остановки обычно выбирают один из двух: отсутствие перехода объектов из кластера в кластер на шаге 2 или минимальное изменение среднеквадратической ошибки.

Алгоритм чувствителен к начальному выбору «центр масс».

Рисунок 1.8 – Пример k-Means алгоритма

1.3.3 Минимальное покрывающее дерево

Данный метод производит иерархическую кластеризацию «сверху вниз». Сначала все объекты помещаются в один кластер, затем на каждом шаге один из кластеров разбивается на два, так чтобы расстояние между ними было максимальным.


Рисунок 1.9 – Пример алгоритма минимального покрывающего дерева

1.3.4 Метод ближайшего соседа

Этот метод является одним из старейших методов кластеризации. Он был создан в 1978 году. Он прост и наименее оптимален из всех представленных.

Для каждого объекта вне кластера делаем следующее:

1. Находим его ближайшего соседа, кластер которого определен.

2. Если расстояние до этого соседа меньше порога, то относим его в тот же кластер. Иначе из рассматриваемого объекта создается еще один кластер.

Далее рассматривается результат и при необходимости увеличивается порог, например, если много кластеров из одного объекта.

1.3.5 Алгоритм нечеткой кластеризации

Четкая (непересекающаяся) кластеризация – кластеризация, которая каждый из относит только к одному кластеру.

Нечеткая кластеризация – кластеризация, при которой для каждого из определяется . – вещественное значение, показывающее степень принадлежности к кластеру j.

Алгоритм нечеткой кластеризации таков:

1. Выбрать начальное нечеткое разбиение объектов на n кластеров путем выбора матрицы принадлежности размера . Обычно .

2. Используя матрицу U, найти значение критерия нечеткой ошибки. Например,

, (1.2)

где - «центр масс» нечеткого кластера k,

. (1.3)

3. Перегруппировать объекты с целью уменьшения этого значения критерия нечеткой ошибки.

4. Возвращаться в пункт 2 до тех пор, пока изменения матрицы не станут значительными.

Рисунок 1.10 – Пример алгоритма нечеткой кластеризации

1.3.6 Применение нейронных сетей

Порой для решения задач кластеризации целесообразно использовать нейронные сети. У данного подхода есть ряд особенностей:

К-во Просмотров: 393
Бесплатно скачать Дипломная работа: Моделирование сети кластеризации данных в MATLAB NEURAL NETWORK TOOL