Дипломная работа: Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі

Для виявлення вихрових формацій у потоці за ознакою зниженого тиску у ядрі вихору застосовуються датчики тиску, які розташовують у зоні розширення формуючого патрубку або за тілом обтікання.

Датчик тиску, який розміщують за тілом у регулярну вихрову доріжку, реагує на проходження кожної вихрової формації.

Кожний вихор може бути виділений у потоці по дуже вираженому переважанню тангенціальній складовій швидкості. Датчик у цьому випадку роблять у вигляді нагрітого термоанемометра. Він змінює свій опір пропорційно зміні швидкості ц вихровій формації.

У якості датчика, який реагує на появу вихрового утворення, у потоці може бути використаний малоінерційний термометр, що розміщується у зазначеному місті. При цьому нагрівачем здійснюються нагрів ядра вихору або прикордонного шару на тілі обтікання.

Збільшення необоротних втрат напору, який створюються обертаючої струї збільшенням лобового опору тіла при обтіканні його потоку з вихороутворенням, може бути змінено дифманометром, який визначає різницю тиску у ядрі обертаючої струї та на ЇЇ периферії. Для тіла, яке обтикається, різниця тиску до та після тіла.

У газових потоках процесах вихороутворення пов’язані зі змінами локальної густини. Зменшення тиску у ядрі вихора викликає зменшення густини. Зміну густини у потоці фіксується спрямованим ультразвуковими коливаннями.

Індикація вихрових формацій у пороці може бути здійснена по відбиттю ультразвукової хвилі або по розсіюванню прямої хвилі.

Аналогічна задача може бути розв’язана методами оптичного фіксування. Можна скористатися фотоелектричним способом реєстрації показників тіньового пристрою.

Індикація вихрових коливань може здійснюватися спрощеним методом, якщо у зоні прецесії обертаючого потоку або у зоні вихороутворення за тілом обтікання помістити феромагнітне тіло, яке робить коливання під дією вихорових коливань. Форма феромагнітного тіла може бути обрана найрізноманітнішою: куля, циліндр, крило, лопата.

Під дією знакозмінної реактивної сили, яка викликається порушенням симетрії потоку, що обтікає вихороутворювач, у процесі вихороутворення, тіло обтікання, закріпленого на гнучкій опорі, відбуваються періодичні коливання, частота, яких пропорційна частоті вихороутворенням.


2.3 Приймачі-перетворювачі вихрових коливань

Вихрові коливання, які утворюються тілами обтікання у досліджувальному потоці, сприймаються й перетворюються у електричну форму приймачами-перетворювачами. Приймачі (датчики) розташовують у регулярній вихровій стежці зі тілом або безпосередньо у тілі, використовуючи знакозмінний перетік середовища, який був викликаний процесами вихороутворення.

Приймачі-перетворювачі поділяються на дві основні групи: нерухомі та здійснюючі коливання з частотою вихороутворення. До першої групи відносяться термоанемометри та термістори, мембрана з тензометром, ультразвукові коливання. До другої групи можна віднести коливання, що існують у вихровій доріжці: куля, прапорець, сам вихороутворювач, закріплений на гнучкій основі.

В залежності від типу вимірюваних коливань приймачі-перетворювачі можуть реагувати на коливання тиску, швидкості, температури.

У якості приймачів-перетворювачів тиску частіше використовуються п’єзоелектричні перетворювачі.

У якості перетворювача для датчика з термістором використовується RC-генератор, де термістор є R - елемент генератора.

Датчики тиску та швидкості окремо мають ряд переваг та недоліків. Нагріті термоанемометри не реагують на шумові завади та пульсації тиску, що поширюються у потоці, але верхня межа частотного діапазону їх роботи обмежена тепловою інерційністю термістору, а їх чутливість зменшується зі збільшенням витратами потоку, через те що збільшується інтенсивність охолодження. Датчик тиску п’єзоелектричного типу практично не мають обмежень за частотою перетворюваного сигналу, але потребують вжиття спеціальних засобів для захисту від сторонніх шумів та пульсацій потоку, який вимірюється. Крім цього, при малих витратах різниця тисків між периферією вихору та його центральною зоною невелика, тому виокремити корисний сигнал з малою інтенсивністю фоні шуму дуже важко (рисунок 2.1).

Рисунок 2.1 – корисний сигнал на фоні завади

Для збільшення діапазону вимірюваних витрат можна використовувати комбінацію п’єзоелектричного датчику тиску та нагрітого мікроанемометру.

2.4 Аналіз вихідних сигналів вихрових датчиків

Вихідні сигнали вихрових датчиків в загальному вигляді можна визначити як періодичні полігармонічні процеси. Для тіла обтікання з формою трикутної призми максимум амплітуди сигналу складає третя або п’ята гармоніка. У енергетичному розподілі третя гармоніка досягає 50% , тоді як перша усього лише 18-20% [1]. Для тіла обтікання у формі циліндру також домінує третя гармоніка, але значення першої гармоніки більше. Наскрізні отворі та протоки, перпендикулярні до осі тіла та ті, що мають виходи у зоні вихороутворення, дуже сильно змінюють картину спектрального розподілу. Перша гармоніка стає 80%, третя та п’ята гармоніка дуже зменшуються, у деяких випадках не перевищує 5-6%. Для тіл обтікання у формі трикутної призми, яку повернули вістря до потоку, з паралельною пластиною у основі спектр стає приблизно однорідний без дуже сильно виражених окремих гармонік до третьої.

Енергія більш високих гармонік різко зменшується.

Вихрові генератори (датчик з вихороутворювачем) утворюють перекручування вихідного сигналу через:

- накладання на основний сигнал пульсуючих коливань швидкості та тиску. Такі пульсації обумовленні роботою насосів та вентиляторів, процесів вихороутворення в місцях опору (вентилі, клапани, коліна, звуження та ін.);

- вібраційні та акустичні коливання, що розходяться по трубопроводу та корпусу пристрою;

- фазові викривлення, які виникають в сигналі через зсув розташування точок збору сигналу.

Викривлення по першому пункту значні у генераторах, де знімання сигналу здійснюються одним швидкісним перетворювачем (анемометром, терморезистором та ін.). Використання в якості приймача перетворювача тиску, який з парафазним виходом підключають по диференціальній схемі, значно зменшує рівень завад по першому пункту. Швидкісні приймачі не чутливі до викривлень, що утворюються за першим пунктом. У перетворювачів тиску, що використовують п’єзоелектричні чутливі елементи, вживають заходи для захисту від вібраційних та акустичних завад.

Розглянемо деякі кількісні характеристики.

К-во Просмотров: 219
Бесплатно скачать Дипломная работа: Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі