Дипломная работа: Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі
де - кругова частота;
p – відношення сигналу до шуму;
a 1 і b 1 константи такі що , де - частота синусоїдального сигналу, - смуга частот, які пропускаються фільтром.
У даній формулі частота синусоїди вважається постійною.
Трохи іншим аспектам присвячена робота [6]. Кедем у своїй роботі [7] застосовує до рішення цього питання спектральний аналіз, а в роботі [8] робить аналіз кількості перетинань методом вищих порядків (Higher Order Crossings). Ідея методу полягає в тому, щоб поєднувати підрахунок кількості переходів через нуль із фільтрами. Пізніше Кедем разом з Барнеттом визначали число переходів через нуль у добутках гаусових процесів [9].
В поданому розділі була проведена робота по визначенню і порівнянню оцінок кількості переходів через нуль, отриманих аналітичним шляхом і шляхом обчислювального експерименту.
Для перевірки виконання на практиці формули (3.1) був проведений експеримент на ПК. Для того, щоб надалі використати отриману модель генератора для розробки алгоритму обробки сигналу.
Проведені розрахунки більш наближені до реальних датчиків.
Параметри, які є незмінними у всіх експериментах наведені нижче:
- мінімальна кількість точок дискретизації на період синусоїди 10;
- мінімальна частота корисного сигналу 20 Гц;
- максимальна частота корисного сигналу 500 Гц;
- довжина випадкової реалізації 4096;
3.1 Обчислювальні експерименти без урахування квадратичної залежності амплітуди від частоти
3.1.1 Фільтрація ковзкого згладжування
Генератором випадкового шуму був обраний стандартний генератор псевдовипадкових чисел c нормальним розподілом у MathCad2001 і генератор псевдовипадкових чисел на зсувних регістрах c зворотним зв'язком, що використовує поліном [10]:
, (3.1)
де - значення самого поліному;
n – значення відповідних розрядів, де n – номер розряду у вхідному числі.
Були визначені характеристики отриманих псевдовипадкових послідовностей.
До цього шуму був доданий корисний сигнал, що являє собою синусоїду. Формула (1) призначена для обмеженої смуги частот, тому отриману нами суміш шуму й корисного сигналу потрібно пропустити через фільтр.
Для фільтрації обраний метод ковзного згладжування з двома проходами. У першому проході вибірку здійснювали по n=8 елементи, а в другому по n =6.
Потім для отриманої суміші шуму й корисного сигналу в процесі експерименту був проведений підрахунок кількості переходів через нульовий рівень (зі співвідношенням сигнал/шум, що дорівнює: 0.1, 0.5, 1, 5).
На рисунку 3.1 показані залежності, отримані з використанням стандартного генератора псевдовипадкових чисел і на рисунку 3.2 - з використанням генератора псевдовипадкових чисел на ЗРЗЗ.
З використанням формули 3.1 були отримані залежності кількості переходів через нульовий рівень від частоти (при таких же співвідношеннях сигнал/шум). Цей графік подано на рисунку 3.3.
Експеримент з використанням стандартного генератору псевдовипадкових чисел c нормальним розподілом у MathCad2001 був проведений з наступними параметрами:
максимальна амплітуда синусоїди 2048
- амплітуда синусоїди 1.5 В (ефективне значення амплітуди);
- амплітуда шуму (середньоквадратичне відхилення) обиралася в залежності від відношення сигнал-шум та діючого значення амплітуди шуму;