Дипломная работа: О минимальных замкнутых тотально насыщенных не формациях конечных групп
Следствие 3.1.2 [9]. Тогда и только тогда – минимальная -замкнутая тотально насыщенная неразрешимая формация, когда , где – монолитическая -минимальная неразрешимая группа с таким неабелевым монолитом , что группа разрешима.
Если – тривиальный подгрупповой функтор, т.е. из теоремы 3.1 вытекает
Следствие 3.1.3. Тогда и только тогда – минимальная тотально насыщенная не -разрешимая формация, когда , где – монолитическая группа с таким неабелевым монолитом , что и группа -разрешима .
Следствие 3.1.4 [7]. Тогда и только тогда – минимальная тотально насыщенная неразрешимая формация, когда , где – монолитическая группа с таким неабелевым монолитом , что группа разрешима .
В случае, когда – совокупность всех подгрупп группы из теоремы 3.1 получаем
Следствие 3.1.5. Тогда и только тогда – минимальная наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева минимальная не -разрешимая группа.
Следствие 3.1.6. Тогда и только тогда – минимальная наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева минимальная не -разрешимая группа.
Следствие 3.1.7. Тогда и только тогда – минимальная наследственная тотально насыщенная неразрешимая формация, когда , где – простая неабелева минимальная неразрешимая группа.
Если – совокупность всех нормальных подгрупп группы имеем
Следствие 3.1.8. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева -группа.
Следствие 3.1.9. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева -группа.
Следствие 3.1.10. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная неразрешимая формация, когда , где – простая неабелева группа.
Минимальные -замкнутые тотально насыщенные не -нильпотентные формации.
Группа называется -нильпотентной, если она имеет нормальную -холловскую подгруппу для каждого . Класс всех -нильпотентных групп совпадает с произведением и является наследственной тотально насыщенной формацией.
Теорема 3.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где – не -нильпотентная группа Шмидта.
Доказательство. Пусть формацию всех -нильпотентных групп.
Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не -нильпотентная формация. В силу теоремы 1 имеет место , где – такая монолитическая -минимальная не -нильпотентная группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Поскольку , то первые два случая невозможны. Поэтому – абелева -группа, где . По лемме 2.2 имеем . Поэтому , где – группа простого порядка. Таким образом, – не -нильпотентная группа Шмидта.
Достаточность. Пусть , где – не -нильпотентная группа Шмидта. Поскольку насыщенная формация, то без ограничения общности можно считать, что . Поэтому , где – минимальная нормальная -подгруппа группы , а – группа простого порядка . Так как группа и все собственные подгруппы из нильпотентны, а следовательно, и -нильпотентны, то – -минимальная не -нильпотентная группа и – -нильпотентный корадикал группы . Используя теперь теорему 1 заключаем, что – минимальная -замкнутая тотально насыщенная не -нильпотентная формация. Теорема доказана.
Используя теорему 2, получим
Следствие 3.2.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где и – различные простые числа, .
В случае, когда из теорем 3.2 и 2 вытекают
Следствие 3.2.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где – не -нильпотентная группа Шмидта.