Дипломная работа: Плазменное поверхностное упрочнение металлов

Рис. 2.З. Повышение температуры точки Ас3 в сравнении с равновесной в зависимости от скорости нагрева

Смещение основных фазовых превращений в область высоких температур (внутри существования γ - области на диаграмме Fe– Fe3 C3 позволяет получать новые условиядля процесса диффузионного насыщения поверхностных слоев легирующими эле­ментами (азот, борэ кремний, углерод и т.д.). Проникновение диффундирующих атомов в поверхностный слой металла, имеющий зародыши новой фазы по разме­рам, близким к критическим, происходит более интенсивно, чем при печной цемен­тации, азотировании и т.д. Именно совмещение процессов диффузионного насыще­ния и зарождения аустенита в поверхностном слое приводит к ускорению в 15-20раз процессов цементации, азотирования и т.д. Таким образом, наличие большего температурного интервала существования у - области на диаграмме Fe– Fe3 Cявляется одной из основных причин, позволяющих использовать сверхскоростную обработку (при помощи плазменной струи (дуги) для широко распространенных сортов стали.

Процесс плазменного поверхностного упрочнения без оплавления поверхно­сти включает четыре стадии: нагрев, фазовое (α → γ ) превращение, частичную гомогенизацию, быстрое охлаждение.

Нагрев.

Нагрев поверхности металла со скоростью порядка 103 -105 º С /с считается одной из наиболее важных особенностей плазменного упрочнения. Степень нагрева и размер нагреваемого объема материала зависит от интенсивности теплового ис= точника ^ и времени его воздействия t. Чем выше концентрация энергии источни­ка, тем меньше размер нагреваемого объема и больше скорость его нагрева d Т/ dt .

При медленном нагреве со скоростью υ имеющиеся в металле внутреннее напряжение релаксируют в следствии процесса полигонизации. С увеличением скорости нагрева υ1 в следствие инерционности процессов и перераспределениидислокационной структуры, полигонизация не успевает произойти и уменьшение внутренних напряжений осуществляется путем рекристаллизации что вызывает измельчание ферритных зерен. Это в дальнейшем (при α → γ превращении) приводит к образованию мелкозернистой структуры аустенита, которая после охлаждения дает мелкодисперсный мартенсит [1.15].

В работах по термической обработке ТВЧ [17-20] показано, что при опреде­ленном увеличении скорости нагрева рекристаллизационные процессы не успевают произойти и изменение зерна не наблюдается. Поэтому , для исходной ферритно-цементитной структуры рекомендуются оптимальные скорости нагрева в диапазоне υ 1 < υ опт < υ 2 . Характерные значения для стали υ 1 =200 ..... 600° С\с и υ 2 = 104 -106 С\с [1,9,15,16,20].

При использовании плазменного нагрева в поверхностном слое образуется более высокодисперсный мартенсит по сравнению с нагревом ТВЧ, хотя средние скорости нагрева для обоих методов одинаковы. При нагреве ТВЧ сплавов железа существенное влияние на кинетику нагрева оказывает превращение феррита. При достижении точки Кюри переход в парамагнитное состояние приводит к резкому замедлению темпа нагрева. Плазменный нагрев позволяет поддерживать очень вы­сокий темп роста температуры, вплоть до стадии интенсивногоα → γ превращения. Поэтому, при плазменном нагреве эффективные значения скорости нагрева выше, чем при нагреве ТВЧ. Сравнение эффективных значений скорости нагрева при плазменном, лазерном и электронно-лучевом упрочнении показывает, что в двух последних случаях температурный интервал аустенитного превращения сдвинут в область более высо­ких температур, по сравнению с плазменным. Это объясняется тем, что при лазер­ном и электронно-лучевом упрочнении обеспечивается наибольшая плотность по­тока энергии на поверхности, а, следовательно, и более высокие скорости нагрева. Исползование высоких скоростей приводит к наследованию дефектов ис­ходной структуры. Показано [21], что повышение твердости связано с дроблением блоков мозаики и значительным увеличением плотности дефектов кристаллической решетки, превышающим величины для случаев традиционной закалки. Положительное влияние на результат плазменного упрочнения оказывают термоупругие напряжения, которые с одной стороны увеличивают плотность де­фектов, с другой - способствуют развитию рекристаллизационных процессов из­мельчения зерна.

α → γ превращения при плазменном упрочнении.

При изменении фазово­го состояния возможны два типа превращения: диффузионное и без диффузионное. Принято считать, что при медленном нагреве желез?

К-во Просмотров: 523
Бесплатно скачать Дипломная работа: Плазменное поверхностное упрочнение металлов