Дипломная работа: Постановка задачи синтеза оптимальных алгоритмов приема сигналов на фоне помех
т.е. сумма произведений одноименных проекций векторов на оси координат. В непрерывном пространстве : , причем скалярное произведение всегда не больше произведения норм векторов (неравенство Шварца).
Угол между векторами определяется так
.
Если определить норму через скалярное произведение, то говорят, что норма порождена скалярным произведением, а пространство, отвечающее такому произведению, называется гильбертовым.
Введем понятие случайного вектора. Случайный вектор – это такой вектор, координаты которого есть случайные величины. Этот вектор в пространстве выборок не занимает какого-либо фиксированного положения. Его конец может оказаться в той или иной области пространства с известной вероятностью, которую можно подсчитать, зная совместное распределение случайных величин . Конец вектора можно представить себе не как определенную точку, а как облако, переменная плотность которого выражает вероятность нахождения конца вектора в данном элементе объема пространства. Геометрически это облако отображается гиперсферой в n-мерном пространстве (рис. 5).
Рис. 5
Элементарный объем в пространстве выборок . Вероятность попадания конца вектора в этот объем будет равна
,
где – плотность вероятности случайного процесса X(t).
Если гиперсфера имеет размеры W, то попаданию точки в эту гиперсферу соответствует вероятность
,
где – проекции гиперсферы W на оси координат системы.
Это выражением может быть записано в векторной форме
.
Если распределены по нормальному закону с одинаковой дисперсией каждой их независимых компонент, то вероятность попасть в элементарный объем пространства выборок равна
,
где – расстояние от начала системы координат до элемента .
В данном случае облако имеет сферическую форму. При различных дисперсиях облако вытягивается вдоль тех осей, которым соответствуют единичные измерения с большей дисперсией.
Если даны два случайных процесса x и h, то косинус угла между их векторами соответствует нормированному коэффициенту взаимной корреляции. Геометрически он характеризует проекцию единичных векторов одного на другой. Если x = h, то – линейная зависимость, если же они перпендикулярны, то – показывает полное отсутствие коррелированности. В этом случае векторы ортогональны, а процессы некоррелированы.
Для нормальных процессов некоррелированность означает и независимость, поскольку для них иной случайной зависимости, кроме линейной, не существует. Доказывается такое утверждение подстановкой коэффициента корреляции, равного нулю, в двумерную нормальную плотность вероятности. В результате такой подстановки плотность вероятности преобразуется к произведению одномерных плотностей вероятности, что является необходимым и достаточным условием статистической независимости двух случайных величин, входящих в систему.
3. Вероятностные характеристики случайных процессов
1. Наиболее полными вероятностными характеристиками случайных процессов (СП) являются различные виды распределений вероятностей мгновенных значений, среди которых основное применение получили интегральная функция распределения вероятностей и плотность вероятности.
Для ансамбля реализаций СП (рис. 6) одномерная интегральная функция распределения определяется как вероятность того, что мгновенные значения реализаций не превысят некоторый фиксированный уровень x в момент времени t.
Аналогично определяется n-мерная интегральная функция распределения как вероятность совместного выполнения неравенств:
. (1)
Виды одномерной интегральной функции распределения для различных процессов показаны на рис. 8.
.
В отличие от интегральных функций распределения случайных величин, эта характеристика СП в общем случае (для нестационарных СП) зависит от времени.