Дипломная работа: Проектирование цифрового регулятора для электропривода с фазовой синхронизацией
Аппроксимируем передаточную функцию регулятора заменой операции дифференцирования на первую разность :
;
;
. (2.9)
где - период дискретизации.
Обозначим:
; (2.10)
.
С учетом выражений (2.10) дискретная передаточная функция регулятора:
.
Период дискретизации принимаем равным периоду следования импульсов опорной частоты Т оп .
Структурная схема электропривода с цифровым регулятором приведена на рисунке 2.6.
Фазовый портрет работы электропривода, а так же графики изменения ошибок по углу и скорости , с цифровым регулятором приведены на рисунках 2.5 и 2.7 соответственно.
При моделировании использовались те же исходные данные, что и с аналоговым регулятором и период квантования =10-3 (с).
Это соответствует частоте исследования опорных импульсов (Гц).
Рисунок 2.5 - Фазовый портрет работы электропривода с цифровым регулятором.
Рисунок 2.6 - Структурная схема модели электропривода с цифровым регулятором, реализованная в MatLab
Рисунок 2.7 - Графики изменения ошибок по углу и скорости электропривода с цифровым регулятором.
2.3 Проведение параметрической оптимизации коэффициентов цифрового регулятора
Из теории автоматического управления известно, что любая цифровая система является лишь приближением аналоговой и ее поведение стремится к поведению аналоговой системы с некоторой степенью точности.
Однако в [8] указывается, что при больших тактах квантования у цифровых систем проявляется свойства, отличные от свойств аналоговых. То есть при аппроксимации линейного регулятора с относительно большим тактом квантования, можно получить цифровой регулятор с оптимизацией параметров которого можно добиться переходный процесс с меньшими и σ.
Для проведения параметрической оптимизации коэффициентов регулятора был применен метод проб и ошибок [8]. Данный метод заключается в последовательном изменении, значений параметров регулятора от малых начальных значений до тех пор, пока процесс в замкнутой системе не приобретет значительной колебательности. После этого следует понемногу уменьшать значения параметров. Использование данного метода обосновано простотой моделирования процессов в электроприводе на ЭВМ. В результате оптимизации выяснилось следующее: при изменении коэффициентов q 0 и q 1 в числителе передаточной функции регулятора система становится неустойчивой, что проявляется в монотонном нарастании ошибки по углу и скорости; при изменении коэффициента q 2 в знаменателе от 50 до 120% от рассчитанного значения, характер переходного процесса изменяется от апериодического к колебательному. В качестве критериев оптимизации выступает время регулирования и средний квадрат ошибки управления
. (2.10)
где: М - число тактов квантования, на рассматриваемом участке.
Результаты моделирования при изменении коэффициента q 2 от 50 до 120% сведены в таблице 2.1 Графики зависимости времени регулирования и среднего квадрата ошибки от коэффициента q 2 приведены на рисунках 2.8 и 2.9 соответственно.
Таблица 2.1 - Зависимости времени регулирования t р и среднего квадрата ошибки от параметра q 2 .
Значение коэффициента , % | Средний квадрат ошибки |
К-во Просмотров: 419
Бесплатно скачать Дипломная работа: Проектирование цифрового регулятора для электропривода с фазовой синхронизацией
|