Дипломная работа: Программное обеспечение системы принятия решений адаптивного робота
Датчики – это не что иное, как интерфейс между роботами и той средой, в которой они действуют, обеспечивающий передачу результатов восприятия. Пассивные датчики , такие как видеокамеры, в полном смысле этого слова выполняют функции наблюдателя за средой – они перехватывают сигналы, создаваемые другими источниками сигналов в среде. Активные датчики ,такие как локаторы, посылают энергию в среду. Их действие основано на том, что часть излучаемой энергии отражается и снова поступает в датчик. Как правило, активные датчики позволяют получить больше информации, чем пассивные, но за счет увеличения потребления энергии от источника питания; еще одним их недостатком является то, что при одновременном использовании многочисленных активных датчиков может возникнуть интерференция. В целом датчики (активные и пассивные) можно разбить на три типа, в зависимости от того, регистрируют ли они расстояния до объектов, формируют изображения среды или контролируют характеристики самого робота.
В большинстве мобильных роботов используются дальномеры ,которые представляют собой датчики, измеряющие расстояние до ближайших объектов. Одним из широко применяемых типов таких датчиков является звуковой локатор ,известный также как ультразвуковой измерительный преобразователь. Звуковые локаторы излучают направленные звуковые волны, которые отражаются от объектов, и часть этого звука снова поступает в датчик. При этом время поступления и интенсивность такого возвратного сигнала несут информацию о расстоянии до ближайших объектов. Для автономных подводных аппаратов преимущественно используется технология подводных гидролокаторов, а на земле звуковые локаторы в основном используются для предотвращения столкновений лишь в ближайших окрестностях, поскольку эти датчики характеризуются ограниченным угловым разрешением. К числу других устройств, альтернативных по отношению к звуковым локаторам, относятся радары (в основном применяемые на воздушных судах) и лазеры. Лазерный дальномер показан на рис. 2.1.
а) б)
Рис. 2.1 – Типичный пример датчика и его практического применения: лазерный дальномер (датчик расстояния) SICK LMS – широко применяемый датчик для мобильных роботов (а); результаты измерения расстояний, полученные с помощью горизонтально установленного датчика расстояния, спроектированные на двухмерную карту среды (б)
Некоторые датчики расстояния предназначены для измерения очень коротких или очень длинных расстояний. В число датчиков измерения коротких расстояний входят тактильные датчики ,такие как контактные усики, контактные панели и сенсорные покрытия. На другом конце спектра находится глобальная система позиционирования (Global Positioning System – GPS), которая измеряет расстояние до спутников, излучающих импульсные сигналы. В настоящее время на орбите находятся свыше двух десятков спутников, каждый из которых передает сигналы на двух разных частотах. Приемники GPS определяют расстояние до этих спутников, анализируя значения фазовых сдвигов. Затем, выполняя триангуляцию сигналов от нескольких спутников, приемники GPS определяют свои абсолютные координаты на Земле с точностью до нескольких метров. В дифференциальных системах GPSприменяется второй наземный приемник с известными координатами, благодаря чему при идеальных условиях обеспечивается точность измерения координат до миллиметра. К сожалению, системы GPS не работают внутри помещения или под водой.
Вторым важным классом датчиков являются датчики изображения – видеокамеры, позволяющие получать изображения окружающей среды, а также моделировать и определять характеристики среды с использованием методов машинного зрения. В робототехнике особо важное значение имеет стереоскопическое зрение, поскольку оно позволяет получать информацию о глубине; тем не менее, будущее этого направления находится под угрозой, поскольку успешно осуществляется разработка новых активных технологий получения пространственных изображений.
К третьему важному классу относятся проприоцептивные датчики ,которые информируют робота о его собственном состоянии. Для измерения точной конфигурации робототехнического шарнира, приводящие его в действие электродвигатели часто оснащаются дешифраторами угла поворота вала ,которые позволяют определять даже небольшие приращения угла поворота вала электродвигателя. В манипуляторах роботов дешифраторы угла поворота вала способны предоставить точную информацию за любой период времени. В мобильных роботах дешифраторы угла поворота вала, которые передают данные о количестве оборотов колеса, могут использоваться для одометрии – измерения пройденного расстояния. К сожалению, колеса часто сдвигаются и проскальзывают, поэтому результаты одометрии являются точными только для очень коротких расстояний. Еще одной причиной ошибок при определении позиции являются внешние силы, такие как течения, воздействующие на автономные подводные аппараты, и ветры, сбивающие с курса автоматические воздушные транспортные средства. Улучшить эту ситуацию можно с использованием инерционных датчиков ,таких как гироскопы, но даже они, применяемые без других дополнительных средств, не позволяют исключить неизбежное накопление погрешности определения положения робота.
Другие важные аспекты состояния робота контролируются с помощью датчиков усилия и датчиков вращающего момента .Без этих датчиков нельзя обойтись, если роботы предназначены для работы с хрупкими объектами или объектами, точная форма и местонахождение которых неизвестны. Можно представить себе, что робототехнический манипулятор с максимальным усилием сжатия и одну тонну закручивает в патрон электрическую лампочку. При этом очень трудно предотвратить такую ситуацию, что робот приложит слишком большое усилие и раздавит лампочку. Но датчики усилия позволяют роботу ощутить, насколько крепко он держит лампочку, а датчики вращающего момента – определить, с каким усилием он ее поворачивает. Хорошие датчики позволяют измерять усилия втрех направлениях переноса и трех направлениях вращения.
Исполнительные механизмы являются теми средствами, с помощью которых роботы передвигаются и изменяют форму своего тела. Для того чтобы представить основные особенности конструкции исполнительных механизмов, необходимо вначале рассмотреть абстрактные понятия движения и формы, используя концепцию степени свободы .Как степень свободы мы будем рассматривать каждое независимое направление, в котором могут передвигаться либо робот, либо один из его исполнительных механизмов. Например, твердотельный свободно движущийся робот, такой как автономный подводный аппарат, имеет шесть степеней свободы; три из них, (х, у, z ), определяют положение робота в пространстве, а три других – его угловую ориентацию по трем осям вращения, известную как качание (yaw), поворот (roll) и наклон (pitch). Эти шесть степеней свободы определяют кинематическое состояние или позу робота. Динамическое состояние робота включает по одному дополнительному измерению для скорости изменения каждого кинематического измерения.
а) б)
Рис. 2.2 – Особенности конструкции манипулятора робота: станфордский манипулятор (Stanford Manipulator) – один из первых манипуляторов робота, в котором используются пять поворотных шарниров (R) и одно призматическое сочленение (Р), что позволяет получить в целом шесть степеней свободы (а); траектория движения неголономного четырехколесного транспортного средства с рулевым управлением от передних колес (б).
Роботы, не являющиеся твердотельными, имеют дополнительные степени свободы внутри самих себя. Например, в руке человека локоть имеет одну степень свободы (может сгибаться в одном направлении), а кисть имеет три степени свободы (может двигаться вверх и вниз, из стороны в сторону, а также вращаться). Каждый из шарниров робота также имеет 1, 2 или 3 степени свободы. Для перемещения любого объекта, такого как рука, в конкретную точку с конкретной ориентацией необходимо иметь шесть степеней свободы. Рука, показанная на рис. 2.2, а, имеет точно шесть степеней свободы, создаваемых с помощью пяти поворотных шарниров , которые формируют вращательное движение, и одного призматического сочленения , который формирует скользящее движение. Чтобы убедиться в том, что рука человека в целом имеет больше шести степеней свободы, можно провести простой эксперимент: положите кисть на стол и убедитесь в том, что вы еще имеете возможность поворачивать руку в локте, не меняя положения кисти на столе. Манипуляторами, имеющими больше степеней свободы, чем требуется для перевода конечного исполнительного механизма в целевое положение, проще управлять по сравнению с роботами, имеющими лишь минимальное количество степеней свободы.
В мобильных роботах количество степеней свободы не обязательно совпадает с количеством приводимых в действие элементов. Рассмотрим, например, обычный автомобиль: он может передвигаться вперед или назад, а также поворачиваться, что соответствует двум степеням свободы. В отличие от этого кинематическая конфигурация автомобиля является трехмерной – на открытой плоской поверхности можно легко перевести автомобиль в любую точку (х, у ), с любой ориентацией (см. рис. 2.2, б). Таким образом, автомобиль имеет три эффективные степени свободы ,но две управляемые степени свободы .Робот называется неголономным ,если он имеет больше эффективных степеней свободы, чем управляемых степеней свободы, и голономным ,если эти два значения совпадают. Голономные роботы проще в управлении (было бы намного легче припарковать автомобиль, способный двигаться не только вперед и назад, но и в стороны), однако голономные роботы являются также механически более сложными. Большинство манипуляторов роботов являются голономными, а большинство мобильных роботов – неголономными.
В мобильных роботах применяется целый ряд механизмов для перемещения в пространстве, включая колеса, гусеницы и ноги. Роботы с дифференциальным приводом оборудованы расположенными с двух сторон независимо активизируемыми колесами (или гусеницами, как в армейском танке). Если колеса, находящиеся с обеих сторон, вращаются с одинаковой скоростью, то робот движется по прямой. Если же они вращаются в противоположных направлениях, то робот поворачивается на месте. Альтернативный вариант состоит в использовании синхронного привода ,в котором каждое колесо может вращаться и поворачиваться вокруг вертикальной оси. Применение такой системы привода вполне могло бы привести к хаотическому перемещению, если бы не использовалось такое ограничение, что все пары колес поворачиваются в одном направлении и вращаются с одинаковой скоростью. И дифференциальный, и синхронный приводы являются неголономными. В некоторых более дорогостоящих роботах используются голономные приводы, которые обычно состоят из трех или большего количества колес, способных поворачиваться и вращаться независимо друг от друга.
Ноги, в отличие от колес, могут использоваться для передвижения не по плоской поверхности, а по местности, характеризующейся очень грубым рельефом. Тем не менее, на плоских поверхностях ноги как средства передвижения значительно уступают колесам, к тому же задача создания для них механической конструкции является очень сложной. Исследователи в области робототехники предприняли попытки разработать конструкции с самым разным количеством ног, начиная от одной ноги и заканчивая буквально десятками. Были разработаны роботы, оборудованные ногами для ходьбы, бега и даже прыжков (как показано на примере шагающего робота на рис. 2.3, а). Этот робот является динамически устойчивым ;это означает, что он может оставаться в вертикальном положении, только непрерывно двигаясь. Робот, способный оставаться в вертикальном положении, не двигая ногами, называется статически устойчивым .Робот является статически устойчивым, если центр его тяжести находится над многоугольником, охваченным его ногами.
В мобильных роботах других типов для передвижения используются иные, чрезвычайно разнообразные механизмы. В летательных аппаратах обычно применяются пропеллеры или турбины. Роботизированные дирижабли держатся в воздухе за счет тепловых эффектов. В автономных подводных транспортных средствах часто используются подруливающие устройства, подобные тем, которые устанавливаются на подводных лодках.
Для того чтобы робот мог функционировать, ему недостаточно быть оборудованным только датчиками и исполнительными механизмами. Полноценный робот должен также иметь источник энергии для привода своих исполнительных механизмов. Для приведения в действие манипулятора и для передвижения чаще всего используются электродвигатели; определенную область применения имеют также пневматические приводы, в которых используется сжатый газ, и гидравлические приводы, в которых используется жидкость под высоким давлением. Кроме того, в большинстве роботов имеются некоторые средства цифровой связи наподобие беспроводной сети. Наконец, робот должен иметь жесткий корпус, на который можно было бы навесить все эти устройства, а также, фигурально выражаясь, держать при себе паяльник, на тот случай, что его оборудование перестанет работать.
а) б)
Рис. 2.3 – Примеры роботов, передвигающихся с помощью ног: один из шагающих роботов Марка Рэйберта (Marc Raibert) в движении (а); роботы AIBO компании Sony, играющие в футбол (© от 2001 года, федерация RoboCup) (б)
Таким образом, существенной задачей в построении интеллектуальных робототехнических систем является информационное моделирование интеллектуального робота как некоторого активного агента среды. И, собственно, одной из задач проектирования рационального агента среды становится задача разработки модели планирования его информационно-двигательных действий.
2.2 Общий принцип построения модели
В соответствие традиционной модели организации моделирования, корда информационными потоками обмениваются исследователь-проектировщик и имитационная модель, обратная связь по результатам моделирования совершает внешняя по отношению к системе имитационного моделирования цепочка – человек с приобщением вспомогательных средств и методов программного обеспечения [11]. При этом исследователь-проектировщик выполняет функцию преобразования информации, которая состоит в интерпретации результатов и принятия решений относительно управления экспериментами и обобщением информации к базе знаний интеллектуального робота. Автоматизация управления экспериментами предполагает при этом создание замкнутого программно реализованного контура управления имитационной моделью
в рамках средств внешнего программного обеспечения (рис. 2.4).
Целенаправленные серии экспериментов в соответствии с заданной целью функционирования робота и учетом ограничений конфигурационных параметров организуют модули, которые специально относят к составу внешнего программного обеспечения. В общем случае, эти модули должны задавать наборы начальных данных, инициировать прогоны модели в целом, обрабатывать результаты и принимать решения о дальнейшем развитии экспериментов соответствие реализуемому алгоритмом управления моделированием. Такой алгоритм, направляя эксперименты, в области допустимых значений параметров производит поиск такого их объединения, который бы обеспечивал оптимум заданного показателя качества, т.е. по существу решает задачу оптимизации:
, (2.1)
где f – целевая функция, представленная алгоритмически имитационная модель;
– вектор параметров объекта моделирования;
X – множество допустимых значений входных параметров.
Таким образом, совокупность алгоритмических и программных средств, обеспечивающая процесс автоматизированного моделирования, образует систему автоматизации имитационного моделирования (САИМ) [36]. Поскольку пользователь при этом не вводит каждый набор начальных данных для очередного прогона имитационной модели и только указывает цель или критерий и область варьирования параметров, в то время как поиск допустимых решений задач моделирования выполняется при помощи САИМ автоматически, к последней можно применить определение интеллектуальной системы моделирования. Например, функции САИМ, в контуре управления гибкой производственной системы, в целом, заключаются в анализе альтернативных вариантов поведения роботов после принятия того или иного возможного решения относительно диспетчеризации и оперативного планирования информационно-двигательных действий и т.п.