Дипломная работа: Программное обеспечение системы принятия решений адаптивного робота
Проблема автоматизации управления экспериментами и синтеза знаний и построения базы знаний может быть представлена логической структурой поэтапного решения отдельных задач интеллектуального робота (рис. 2.5).
На первом этапе автоматизации управления экспериментами решаются две задачи: исполняется структурно-алгоритмическое построение собственно модуля управления; формируются содержательные основы и формальные требования к организации информационного обмена с имитационной моделью.
Задача структурно-алгоритмического построения модуля управления экспериментами и синтеза системы знаний решается в следующей последовательности: определяются состав и структура модуля (разрабатываются условия взаимодействия его компонент и положение в общей структуре САИМ).
При выполнении серии прогонов имитационной модели происходит целенаправленное варьирование значений параметров, которое может влиять на значения целевой функции не только посредством прямого влияния на показатели функционирования объекта моделирования, но и побочно посредством других сопряженных элементов объекта (робота). Как следствие, изменяются стоимостные и другие показатели. Наряду с тем, на значения некоторых параметров можно наложить ограничения, в частности часть их фиксировать, т.е. задать декларативно. Это может отображаться при формировании наборов начальных данных и инициализации начальных состояний процесса моделирования системы знаний.
Рассматривая имитационную модель как средство целенаправленного преобразования информации в соответствии с некоторой системой предписаний, имеет смысл говорить про алгоритм имитационного моделирования. Тогда формальную интерпретацию рассмотренных требований можно записать следующим образом:
(2.2)
где S – входное слово алгоритма имитационного моделирования;
Q – множество допустимых наборов значений параметров робота;
С – область определения алгоритма имитационного моделирования.
Входное слово S задает набор начальных данных для конкретного набора данных, т.е. , где каждая величина соответствует некоторому значению определенного параметра объекта моделирования. Область С определяется программной реализацией алгоритма имитационного моделирования, а образовать ее возможно множеством D вх наборов входного алфавита. Все величины , имеющие разрешенную реализацию объекта моделирования U .
Таким образом, выражения (2.2) соответственно определяют условия согласования S с имитационной моделью и с алгоритмом. Задача состоит в разработке аппарата формального анализа непротиворечивости изменений семантически взаимосвязанных параметров для обеспечения варьирования, что не нарушает условия (2.2) и не приводит к изменениям фиксированных параметров.
На втором этапепроизводится автоматизация управления экспериментами и построения системы знаний решаются следующие этапы:
– разработка принципов, взаимодействия системы логического вывода и численных оптимизационных процедур;
– выбор (разработка) аппарата реализации логического вывода в комбинированных алгоритмов управления экспериментами;
– разработка на основе предложенного аппарата эффективных алгоритмов вывода с учетом специфики взаимодействия с численными процедурами оптимизации.
На третьем этапе решается задача разработки оптимизационных процедур, которые используются в планировании экстремальных действий. При этом вопрос разработки алгоритмического обеспечения можно рассматривать для специфических аспектов моделирования объекта, а именно:
– автоматизации управления экспериментами в условиях лингвистической неопределенности параметров, например, «степень подобия / отличия…» не имеет естественного численного измерения;
– организации экстремальных экспериментов в задачах однопараметрической оптимизации при существенно неравномерном расположении точек в середине интервала, например, унимодальная функция отклика, и фиксирования соответствующих состояний в модели системы знаний;
– сокращение времени поиска при значительной продолжительности прогона имитационной модели, что является важным при многоитерационных алгоритмов поиска, полном переборе вариантов и т.п.
2.3 Алгоритмы планирования
Метод потенциалов в задаче выбора пути для мобильного робота был предложен А.К. Платоновым в 1970 году.
При этом рассматривается случай, когда робот снабжен достаточно точной навигационной системой, чтобы ее ошибками можно было пренебречь, и системе управления известны как координаты робота и измерительного устройства, так и ориентация сектора обзора и направление производящихся измерений в некоторой абсолютной системе координат (АСК). Робот во всех случаях представляет собой точку с предписанным вектором ориентации.
Суть метода заключается в следующем. Предположим, что цель имеет некоторый положительный заряд, препятствия заряжены отрицательно; местоположения цели и препятствий фиксированы. Пусть также имеется некоторая отрицательно заряженная точка, способная перемещаться. Поместим ее в исходную точку. Под действием сил подвижная точка будет притягиваться к цели и отталкиваться от препятствий, причем законы движения могут задаваться, в принципе, различными способами. Логично предположить, что при некоторых ограничениях на структуру местности и законы движения подвижной точки эта точка достигнет цели.
В зависимости от способа задания функций, можно получить трассы с обходом препятствий с той или иной степенью «риска» (величины приближения к препятствиям). Рассматриваемые ниже алгоритмы гарантируют от зацикливания в случае, когда контуры препятствий выпуклы. Метод может также использоваться для случая, когда препятствия разбиваются на группы, выпуклые оболочки которых не пересекаются.
За рубежом основные ссылки делаются на работы Брукса и Хатиба, которые вышли в свет в 1985 году [6, 7]. Следует отметить, что в Японии подобные разработки были выполнены сотрудниками фирмы Hitachi, Ltd. в 1984 году [9]. Подобные же алгоритмы использовались и при трассировке печатных плат в 1967 году (см. [8], в которой дана ссылка на более раннюю работу 1948 года). Для того, чтобы проследить эволюцию архетипа основной идеи метода, ниже приводится историческая справка о разработках, имеющих отношение к методу потенциалов в задачи выбора пути.
В данной работе исследованы модификации алгоритма, изложенного в [1]. При этом рассмотрены следующие направления модификации исходного алгоритма:
1) Исследованы степенная и показательная функции отталкивания от препятствий и влияние их на результирующий путь мобильного робота (МР). Для оценки эффективности пути использовалась функция отклонения вектора направления движения от вектора направления на цель.
2) Проанализированы возможности использования метода потенциалов для управления распределенной мобильной системой (РМС). Исследовано пять способов организации такого движения:
а) движение по схеме «цепь». В этом случае сила притяжения цели действует на «лидера», и каждый МР «притягивается» к впереди идущему;
б) движение типа «гонка за лидером». В этом случае все элементы РМС «притягиваются» к «лидеру», который, в свою очередь, «притягивается» к целевой точке;
в) движение типа «расхождения». В этом случае на МР, расположенные компактной группой или цепью, начинает действовать сила отталкивания от «лидера». МР «разбегаются», исследуя каждый свой участок;