Дипломная работа: Решение транспортной задачи линейного программирования в среде MS Excel

при условиях:

[2]

[3]

[4]

Поскольку переменныеудовлетворяют системам уравнений(2) и (3) и условию неотрицательности (4), то обеспечивается доставка необходимого количества груза в каждый из пунктов назначения (условие (2)), вывоз имеющегося груза из всех пунктов отправления (условие (3)), а также исключаются обратные перевозки (условие (4)).

Определение 1. Всякое неотрицательное решение системы линейных уравнений (2) и (3), определяемое матрицей Х=() (i=1,…m;j=1,…n), называется планом транспортной задачи.

Определение2. План =() (i=1,…m;j=1,…n), при котором функция (1) принимает своё минимальное значение, называется оптимальным планом транспортной задачи.

Обычно исходные данные транспортной задачи записывают в виде (см. таблицу 1.)

Очевидно, общее наличие груза у поставщиков равно:

,

а общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, т.е.

единиц.

Если общая потребность в грузе в пунктах назначения равна запасу груза в пунктах отправления, т.е.

=, [5]

То модель такой транспортной задачи называется закрытой. Если же указанное условие не выполняется, то модель транспортной задачи называется открытой.

Таблица 1

Теорема 1 . Для разрешимости транспортной задачи необходимо и достаточно, чтобы запасы груза в пунктах отправления были равны потребностям в грузе в пунктах назначения, т.е. чтобы выполнялось равенство (5)

Пункты

отправления

Пункты назначения

Запасы

К-во Просмотров: 966
Бесплатно скачать Дипломная работа: Решение транспортной задачи линейного программирования в среде MS Excel