Дипломная работа: Связь комбинаторики с различными разделами математики

Выполнила:

студентка V курса математического факультета

Бородулина Юлия Анатольевна

Научный руководитель:

к. ф-м. н., доцент кафедры алгебры и геометрии

Е.М. Ковязина

Рецензент:

к. ф-м. н., доцент кафедры алгебры и геометрии

О.С. Руденко

Допущена к защите в государственной аттестационной комиссии

«___» __________2005 г. Зав. кафедрой Е.М. Вечтомов

«___»___________2005 г. Декан факультета В.И. Варанкина

Киров

2005

Содержание

Введение........................................................................................................... 3

§1. Применение леммы Бернсайда к решению комбинаторных задач......... 5

1.1. Орбиты группы перестановок.......................................................... 5

1.2. Длина орбиты группы перестановок. Лемма Бернсайда................ 5

1.3. Комбинаторные задачи.................................................................... 8

§2. «Метод просеивания».............................................................................. 21

2.1. Формула включения и исключения................................................ 21

2.2. Общий «метод просеивания» или «пропускания через решето». Решето Сильва-Сильвестра........................................................................................ 23

2.3. Использование общего метода решета в теории чисел................. 23

§3. Разбиение фигур на части меньшего диаметра...................................... 28

§4. «Счастливые билеты».............................................................................. 34

Библиографический список........................................................................... 39

Введение

Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов называется комбинаторикой . Комбинаторика возникла в XVI веке. Вопросы, касающиеся азартных игр, явились движущей силой в развитии комбинаторики. Сейчас комбинаторные методы применяются как в самой математике, так и вне её – теория кодирования, планирование эксперимента, топология, конечная алгебра, математическая логика, теория игр, кристаллография, биология, статистическая физика, экономика и т.д.

Комбинаторика, пройдя многовековой путь развития, обретя собственные методы исследования, с одной стороны, широко используется при решении задач алгебры, геометрии, анализа, с другой стороны, сама использует геометрические, аналитические и алгебраические методы исследования.

Цель дипломной работы: показать связь комбинаторики с различными разделами математики.

Задачи:

1. Изучить лемму Бернсайда и решить комбинаторные задачи о раскраске с её применением;

2. Показать применение метода «просеивания» для подсчёта количества простых и взаимно простых чисел;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 336
Бесплатно скачать Дипломная работа: Связь комбинаторики с различными разделами математики