Дипломная работа: Связь комбинаторики с различными разделами математики

12) (6, 4, 2) (1, 5, 3)

13) (2, 4, 6) (3, 5, 1)

14) (1, 3, 6) (2, 4, 5)

15) (6, 3, 1) (5, 4, 2)

16) (1, 4, 6) (2, 3, 5)

17) (6, 4, 1) (5, 3, 2)

в) Вокруг каждой из шести осей, соединяющих середины противоположных рёбер куба, имеется одно вращение. Им соответствуют перестановки:

18) (2, 3) (1, 4) (5, 6)

19) (1, 3) (4, 2) (5, 6)

20) (1, 6) (5, 2) (3, 4)

21) (1, 5) (6, 2) (3, 4)

22) (4, 6) (3, 5) (1, 2)

23) (6, 3) (5, 4) (1, 2)

Вместе с тождественной перестановкой (1)(2)(3)(4)(5)(6) получаем 24 перестановки – все элементы группы G . Итак, в группе G вращений куба имеется:

1 перестановка типа <1, 1, 1, 1, 1, 1>,

6 перестановок типа <1, 1, 4>,

3 перестановки типа <1, 1, 2, 2>,

8 перестановок типа <3, 3>,

6 перестановок типа <2, 2, 2>.

Поэтому тождественная перестановка имеет 26 неподвижных точек на М, перестановки второго и пятого типов имеют по 23 неподвижных точек на М, перестановки третьего типа – по 24 , а перестановки четвёртого типа – по 22 . Тогда по лемме Бернсайда получаем (26 + 6∙23 + 3∙24 + 8∙22 + 6∙23 ) = 10 .

Итак, число геометрически различных способов раскраски граней куба в два цвета равно 10.

Задача 4. Сколько различных ожерелий можно составить из двух синих, двух белых и двух красных бусин?

Решение. Переформулируем задачу так: сколькими геометрически различными способами можно раскрасить вершины правильного шестиугольника так, чтобы две были синего цвета, две – белого, две – красного? а) Вокруг центра шестиугольника имеется пять поворотов на углы . Им соответствуют перестановки:

1) (1, 2, 3, 4, 5, 6)

2) (1, 3, 5) (2, 4, 6)

3) (1, 4) (2, 5) (3, 6)

4) (1, 5, 3) (2, 6, 4)

5) (1, 6, 5, 4, 3, 2)

б) Имеется три симметрии относительно осей, соединяющих противоположные вершины правильного шестиугольника. Им соответствуют перестановки:

К-во Просмотров: 344
Бесплатно скачать Дипломная работа: Связь комбинаторики с различными разделами математики