Дипломная работа: Термодинаміка і синергетика
Wb= p(V,T) dV.
Мал. 1
Оскільки тиск залежить не тільки від об'єму, але і від температури, то при різних змінах температури на шляху а і в під час переходу одного і того ж початкового стану (p1,V1) в одне і теж кінцеве (p2,V2) робота виходить різною. Звідси видно, що при замкнутому процесі (циклі) 1а2в1 система здійснює роботу не рівну нулю. На цьому заснована робота всіх теплових двигунів.
З першого початку термодинаміки виходить, що робота може здійснюватися або за рахунок зміни внутрішній енергії, або за рахунок повідомлення системи кількості теплоти . У випадку якщо процес круга, початковий і кінцевий стан співпадають U2- U1 = 0 і W = Q, тобто робота при круговому процесі може здійснюватися тільки за рахунок отримання системою теплоти від зовнішніх тіл .
Перший початок можна сформулювати в декількох видах :
1. Неможливе виникнення і знищення енергії .
2. Будь-яка форма руху здатна і повинна перетворюватися на будь-яку іншу форму руху .
3. Внутрішня енергія є однозначною формою стану .
4. Вічний двигун першого роду неможливий .
5. Нескінченна мала зміна внутрішній енергії є повним диференціалом.
6. Сума кількості теплоти і роботи не залежить від шляху процесу.
Перший закон термодинаміки, постулювавши закон збереження енергії для термодинамічної системи. не указує спрямування процесів, що відбуваються в природі. Спрямування термодинамічних процесів встановлює другий початок термодинаміки.
1.4 ДРУГИЙ ПОЧАТОК ТЕРМОДИНАМІКИ
Другий початок термодинаміки встановлює наявність в природі фундаментальної асиметрії, тобто одно направленості всіх мимовільних процесів, що відбуваються в ній.
Другий основний постулат термодинаміки пов'язаний так само з іншими властивостями термодинамічної рівноваги як особливого виду теплового руху. Досвід показує, що якщо дві рівноважні системи А і В привести в тепловий контакт, то незалежно від відмінності або рівності у них зовнішніх параметрів вони або залишаються по колишньому в стані термодинамічної рівноваги, або рівновага у них порушується і через деякий час в процесі теплообміну ( обміну енергією ) обидві системи приходять в інший рівноважний стан. Крім того, якщо є три рівноважні системи А, В і З і якщо системи А і В порознь знаходяться в рівновазі з системою З, то системи А і В знаходяться в термодинамічній рівновазі і між собою (властивості транзитивності термодинамічної рівноваги ).
Хай є дві системи. Для того, щоб переконається в тому, що вони знаходяться в стані термодинамічної рівноваги треба зміряти незалежно всі внутрішні параметри цих систем і переконатися в тому, що вони постійні в часі. Це завдання дуже важке.
Виявляється проте, що є така фізична величина, яка дозволяє порівняти термодинамічні стани двох систем і двох частин однієї системи без докладного дослідження і внутрішніх параметрів. Ця величина, що виражає стан внутрішнього руху рівноважної системи, має одне і те ж значення у всіх частин складної рівноважної системи незалежно від числа частинок в них і визначуване зовнішніми параметрами і енергією називається температурою .
Температура є інтенсивним параметром і служить мірою інтенсивності теплового руху молекул.
Викладене положення про існування температури як особливій функції стану рівноважної системи представляє другий постулат термодинаміки.
Інакше кажучи, стан термодинамічної рівноваги визначається сукупністю зовнішніх параметрів і температури.
Р. Фаулер і Е. Гуггенгейм назвали його нульовим початком, оскільки воно подібно до першого і другого початку що визначає існування деяких функцій стану, встановлює існування температури у рівноважних систем. Про це згадувалося вищим.
Отже, всі внутрішні параметри рівноважної системи є функціями зовнішніх параметрів і температур .(Другий постулат термодинаміки).
Виражаючи температуру через зовнішні параметри і енергію, другий постулат можна сформулювати у такому вигляді : при термодинамічній рівновазі всі внутрішні параметри є функціями зовнішніх параметрів і енергії.
Другий постулат дозволяє визначити зміну температури тіла по зміні якого або його параметра, на чому заснований пристрій різних термометрів.
1.4.1 ОБОРОТНІ І НЕОБОРОТНІ ПРОЦЕСИ
Процес переходу системи із стану 1 в 2 називається оборотним, якщо поверненням цієї системи в те, що початкове складається з 2 в 1 можна здійснити без яких би то не було змін навколишніх зовнішніх тілах.
Процес же переходу системи із стану 1 в 2 називається необоротним, якщо зворотний перехід системи з 2 в 1 не можна здійснити без зміни в навколишніх тілах .
Мірою безповоротності процесу в замкнутій системі є зміною новій функції стану - ентропії, існування якої у рівноважної системи встановлює перше положення другого початку про неможливість вічного двигуна другого роду . Однозначність цієї функції стану приводить до того, що всякий необоротний процес є не рівноважним.