Дипломная работа: Вміння порівнювати в процесі навчання математики

1. Які ознаки спільні у паралельних прямих і прямих, що перетинаються; у паралельних і мимобіжних?

2. Які відмінні ознаки у паралельних і мимобіжних прямих?

Виконання таких завдань, по-перше, формує вміння аналізувати, порівнювати і, по-друге, попереджує типову помилку, коли учні в означенні мимобіжних прямих називають тільки першу ознаку.

Послідовне порівняння полягає в тому, що новий об'єкт порівнюється з раніше вивченим. Порівняння сприяє встановленню більш глибоких зв'язків раніше вивченого і нового матеріалу, полегшує засвоєння знань, допомагає побачити аналогії.

Розглянемо приклад послідовного порівняння під час вивчення у восьмому класі поняття рівності фігур за допомогою руху. Учні повторюють відомі їм означення рівності трикутників: АВС=А1 В1 С1 , якщо АВ=А1 В1, ВС=В1 С1 , АС=А1 С1, А=А1, В=В1, С=С1 . Вчитель дає нове означення рівності фігур за допомогою руху. Порівнюючи ці означення, учні виділяють істотні ознаки між ними. Різні означення рівності трикутників – це наслідок відмінності їх теоретичних обґрунтувань. А щоб учні впевнилися в тотожності цих означень при їх різних формулюваннях, на прикладі з трикутниками доводиться, що із одного означення випливає інше і навпаки.

Відстроченими називаються порівняння об'єктів, що вивчалися на різних уроках, значно віддалених один від одного в часі.

У практиці навчання математики найбільш поширене послідовне порівняння. Але, оскільки вчителі все більш широко практикують вивчення матеріалу блоками, то часто застосовується і паралельне порівняння при одночасному вивченні взаємопов’язаних понять, теорем, задач. Завдяки використанню в навчанні послідовного порівняння і порівняння – протиставлення у свідомості школярів загальмовуються помилкові і закріплюються правильні тимчасові зв'язки, диференційовано встановлюються поняття, правила і закони.

Якщо порівняння різних предметів (фактів, явищ) здійснюється не по одній ознаці, а знаходять спільне і відмінне по різним ознакам і в різних напрямках, то таке порівняння називається комплексним.

Приклади:

o Чотирикутники порівнють за числом пар паралельних сторін;

o дроби відрізняють по відношенню величин чисельника і знаменника;

o додавання дійсних чисел і додавання векторів порівнють за виконуваністю законів додавання.

Порівняння однорідних предметів по одній ознаці веде до класифікації, розподілу об'єктів на дві групи, наприклад: функції – періодичні і неперіодичні, зростаючі й спадні.

Як і будь-який прийом розумової діяльності, порівняння має свій предмет, супроводжує визначену мету і пропонує свої шляхи реалізації в процесі навчання.

При вивченні математики предметом порівняння можуть бути об'єкти навколишньої дійсності, поняття, ознаки, результати дослідів, теореми і їх доведення, структури задач і методи їх розв’язань, операційний склад алгоритмів різних дій, способи навчальної роботи, а також факти, процеси, етапи роботи. На уроках учням пропонують порівнювати: взаємне положення прямих у=5х и у=5х-7 на координатній площині; істотні і несуттєві, доказові і характеристичні ознаки понять; способи роботи з метою вибору більш раціонального (наприклад, самоконтроль шляхом припущень або шляхом складання зворотної задачі).

Порівнюючи, учні повинні чітко розуміти, з якою метою це робиться. На уроці цілі порівняння часто називає сам учитель; при цьому необхідно викликати в учнів інтерес до оволодіння даним прийомом мислення.

Мета порівняння в навчальному процесі різноманітна: узагальнення і систематизації знань, виділення в них головного, істотного, пошук загальних ознак при формуванні понять; пошук аналогій у навчальному матеріалі; пошук закономірностей індуктивним шляхом; висування гіпотез; установлення міжпредметних зв'язків у навчальному матеріалі й у способах його вивчення; запобігання помилок за аналогією; побудова системи аналогів даного об'єкта; запобігання підміни істотних властивостей поняття несуттєвими властивостями; виділення істотного і несуттєвого в умові задачі, узагальнення її структури й усвідомлення границь варіації її умови усередині даного типу задач. Порівняння є одним з раціональних прийомів заучування і відтворення матеріалу, але, на жаль, недостатньо застосовується при вивченні математики. Без порівняння неможливий перенос способу рішення однієї задачі на іншу – аналогічну.

Інтерес до порівняння виникає в учнів в міру того, як вони усвідомлюють його роль в успішному оволодінні знаннями, починають розуміти, що цей прийом має загальнопізнавальний характер, що , навчивши порівнювати на уроках математики, вони зможуть використовувати порівняння при вивченні інших шкільних предметів, у життєвих ситуаціях. У навчальному процесі порівняння служить одним із засобів об'єднання матеріалу в блоки. На уроці порівняння виступає як самоціль. Воно найчастіше є основою більш складних прийомів розумової діяльності або способом раціонального заучування матеріалу.

Існує ряд дидактичних вимог до використання прийому порівняння в навчальному процесі:

1. Порівнювати треба тільки однорідні предмети.

Недоцільне порівняння, наприклад, таких понять, як “відрізок” і “точка”, “ромб” і “коло”.

2. Спільне між об'єктами порівняння можна встановлювати лише тоді, коли між ними є якась відмінність.

Різницю між об'єктами можна встановлювати тільки при наявності в них визначеної подібності.

Школярі не завжди усвідомлюють відносини між родинними поняттями, як відносини частинного і загального. Саме в такому випадку доречно порівнювати ці поняття за допомогою питань, наприклад: Що спільного і відмінного у функцій і послідовностей? Яке з цих понять є частинним випадком стосовно іншого і чому?

3. Порівнювати предмети слід за тими ознакам, що мають важливе, істотне значення.

Необхідно враховувати, що до порівняння учні не знають про істотність ознак. Крім того, істотність ознак також визначається в порівнянні. Тому вчитель спочатку підказує, по яких важливих ознаках варто проводити порівняння. Так при порівнянні задач варто звертати увагу на дані умов, характер зв'язку між даними і шуканими, тому що саме це визначає спосіб розв’язання. Зовнішня подібність або відмінність смислу задач не має істотного значення для способу їхнього рішення. У задач одного типу є загальне в істотному: структурі, умові, зв'язках між даними умови і шуканих величин – і розбіжність між несуттєвим у їхніх умовах і рішеннях.

Психологи установили, що учні легше знаходять у порівнюваних об'єктах або тільки спільне, або тільки відмінне. Присутність в порівнюваних об'єктах різного і подібного (загального) виявляється для учнів більш важкою справою, тому що вимагає розумової роботи в двох напрямках одночасно. Школярі затрудняються порівнювати процеси міркувань при виконанні вправ на знаходження процента від числа, числа за його процентом та процентного відношення двох чисел.

4. Порівнювати треба під певним кутом зору. У навчанні порівняння завжди цілеспрямоване. Ті самі об'єкти можуть мати подібність, якщо їх розглядати з однієї позиції, і можуть відрізнятися, якщо змінити “кут зору”. Наприклад, формули для обчислення площ паралелограма і трапеції зовні не мають нічого загального, але способи їхніх доведень однакові: суть виведення формул полягає в тому, що фігура перетвориться в такі фігури (або таку фігуру), площі яких заздалегідь відомі.

Прийоми розумової діяльності формуються стихійно або цілеспрямовано. Учні під керівництвом учителя порівнюють об'єкти за спільними, відмінними, та за тими й іншими ознаками одночасно. Але якщо при цьому сутності прийому, його операційному складові не приділяється належної ув

К-во Просмотров: 224
Бесплатно скачать Дипломная работа: Вміння порівнювати в процесі навчання математики