Дипломная работа: Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе

Элементарные исходы, при которых данное событие наступает, называются благоприятствующими этому событию, или благоприятными шансами. Например, при подбрасывании игрального кубика элементарные исходы A2, A4, A6 являются благоприятствующими событию “выпало четное число очков”.

Пример 1. Подбрасываются два игральных кубика, подсчитываются суммы выпавших очков (суммы числа очков на верхних гранях обоих кубиков). Сумма выпавших очков на двух кубиках может меняться от 2 до 12. Записать полную группу событий в этом опыте.

Решение. Полную группу событий образуют равновозможные элементарные исходы (k; m), k, m = 1, 2, 3, 4, 5, 6, представленные в таблице. Элементарный исход означает, что на первом кубике выпало k очков, а на втором m очков. Например (3, 4) — на первом кубике 3 очка, на втором — 4 очка.

Òàáë. A

(1, 1)

(2,1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(1, 2)

(2,2)

(3, 2)

(4, 2)

(5, 2)

(6, 2)

(1, 3)

(2,3)

(3, 3)

(4, 3)

(5, 3)

(6, 3)

(1, 4)

(2,4)

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(1, 5)

(2,5)

(3, 5)

(4, 5)

(5, 5)

(6, 5)

(1, 6)

(2,6)

(3, 6)

(4, 6)

(5, 6)

(6, 6)

Пример 2. Сколько элементарных исходов благоприятствует событию “на обоих кубиках выпало одинаковое число очков” при подбрасывании двух игральных кубиков.

Решение. Этому событию благоприятствуют 6 элементарных исходов (см. табл. 1): (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6).

Пример 3. Подбрасывается два игральных кубика. Какому событию благоприятствует больше элементарных исходов: “сумма выпавших очков равна 7”, “сумма выпавших очков равна 8”?

Решение. Событию “сумма выпавших очков равна 7” благоприятствуют 6 исходов (в табл. 1 выделены цветом). Событию “сумма выпавших очков равна 8” благоприятствует 5 исходов: (2, 6), (3, 5), (4, 4), (5, 3), (6, 2). Ответ ясен.

Кстати говоря, можно предложить учащимся и другое задание: подсчитать, сколько элементарных исходов благоприятствует событиям “сумма очков на кубиках равна 2”, “сумма очков на кубиках равна 3” и т. д., и эти результаты отметить на координатной плоскости, с которой учащиеся начальных классов знакомы.

Ðèñ. A

Пример 4. Подбрасывается три игральных кубика, подсчитываются суммы очков, выпавших на них. Сколькими способами можно получить в сумме 5 очков; 6 очков?

Решение. Получить в сумме 5 очков можно шестью способами: (1; 1; 3)[4] , (1; 3; 1), (3; 1; 1), (1; 2; 2), (2; 1; 2), (2; 2; 1). Получить в сумме 6 очков можно десятью способами (1; 1; 4), (1; 4; 1), (4; 1; 1), (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1), (3; 1; 2), (3; 2; 1), (2; 2; 2).

I. 3. Классическое определение вероятности

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие. Вероятность события A обозначают через P(A) (здесь P — первая буква французского слова probabilite — вероятность):

,

ãäå m — число элементарных исходов, благоприятствующих событию A; n — число всех равновозможных элементарных исходов опыта, образующих полную группу событий.

Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Пример 5. В урне 10 одинаковых по размерам и весу шаров, из которых 4 красных и 6 голубых. Из урны извлекается 1 шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение. Событие “извлеченный шар оказался голубым” обозначим буквой A. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию A. В соответствии с формулой получаем

.

Пример 6. Все натуральные числа от 1 до 30 записаны на одинаковых карточках и помещены в урну. После тщательного перемешивания из урны извлекается одна карточка. Какова вероятность того, что число на взятой карточке окажется делящимся на 5?

Решение. Обозначим через A событие “число на взятой карточке кратно 5”. В данном испытании имеется 30 равновозможных элементарных исходов, из которых событию A благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

.

Пример 7. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (11, 22, 33, 44, 55, 66, 77, 88, 99). В данном случае m = 9, n = 90:

,

где A — событие “число с одинаковыми цифрами”.

Пример 8. Подбрасывается два игральных кубика, отмечается число очков на верхней грани каждого кубика. Найти вероятность того, что на обоих кубиках выпало одинаковое число очков.

К-во Просмотров: 434
Бесплатно скачать Дипломная работа: Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе