Дипломная работа: Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе
11
6
7
8
9
10
11
12
Непосредственный подсчет показывает: вероятность того, что сумма очков на верхних гранях меньше 9, равна ; что эта сумма больше 7 — ; что она делится на 3: ; наконец, что она четна, .
Задача 5. В старинной индейской игре “Тонг” два игрока одновременно показывают друг другу либо один, либо два, либо три пальца на правой руке. Если для каждого игрока равновозможно показать 1, 2 или 3 пальца, то чему равна вероятность того, что общее число показанных пальцев четно? Нечетно? Больше четырех? Меньше двух?
Обсуждение. Составим таблицу, в которой номер строки — число пальцев, показанных первым игроком, номер столбца — число пальцев, показанных вторым игроком, а на пересечении строки и столбца стоит общее число показанных пальцев, т. е. сумма номеров строки и столбца.
Òàáë. D
1 |
2 |
3 | |
1 |
2 |
3 |
4 |
2 |
3 |
4 |
5 |
3 |
4 |
5 |
6 |
Всего имеется 9 равновозможных исходов, соответствующих девяти элементам таблицы. Общее число показанных пальцев четно в 5 исходах, нечетно — в 4, больше четырех — в 3 исходах, меньше двух — ни в одном. Вероятности равны соответственно , , , .
Задача 6. Какова вероятность того, что наудачу выбранное четырехзначное число составлено только из нечетных цифр?