Дипломная работа: Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе
.
Пример 9. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее — получить в сумме 7 или 8?
Решение. Обозначим события: A — “выпало 7 очков”, B — “выпало 8 очков”. Событию A благоприятствуют 6 элементарных исходов, а событию B — 5 исходов (см. табл. 1, рис. 1). Всех равновозможных элементарных исходов — 36, что видно из той же таблицы. Значит:
, .
Итак, , т. е. получить в сумме 7 очков — более вероятное событие, чем получить в сумме 8 очков [14, 98].
Задача 1[5] . В урне лежат 5 красных, 12 белых и 9 синих шаров. Найти вероятность того, что: а) вынут белый шар; б) вынут красный шар; в) вынут синий шар; г) вынут цветной шар.
Обсуждение. В задаче имеется 5 + 12 + 9 = 26 равновозможных исходов. Поэтому вероятности равны:
а) ; б) ; в) .
На случае г) остановимся подробнее. Наверное, цветным шаром можно назвать красный или синий шар. Вынуть цветной шар можно одним из 5 + 9 = 14 способов. Таким образом, цветной шар можно достать способами.
Задача 2 (двойное испытание). В урне 3 черных и 4 белых шара. Вы вынимаете один из них, кладете обратно, перемешиваете и вынимаете другой. Возможно одно из трех: 1) оба шара черные, 2) оба шара белые, 3) шары различных цветов. Каковы вероятности этих событий?
Обсуждение. Условно черным шарам дадим номера 1, 2, 3; белым — 4, 5, 6, 7. Пары букв показывают цвет двух вынутых шаров (левая буква относится к первому выниманию, правая — ко второму). Составим таблицу.
Òàáë. B
1(ч) | 2(ч) | 3(ч) | 4(б) | 5(б) | 6(б) | 7(б) | |
1(ч) | чч | чч | чч | чб | чб | чб | чб |
2(ч) | чч | чч | чч | чб | чб | чб | чб |
3(ч) | чч | чч | чч | чб | чб | чб | чб |
4(б) | бч | бч | бч | бб | бб | бб | бб |
5(б) | бч | бч | бч | бб | бб | бб | бб |
6(б) | бч | бч | бч | бб | бб | бб | бб |
7(б) | бч | бч | бч | бб | бб | бб | бб |
Нетрудно подсчитать, что равновозможных исходов 49. Вероятность появления двух черных шаров равна , двух белых — , шаров разных цветов — .
Задача 3. Найдите вероятности того, что при двойном испытании как в предыдущей задаче: а) вынут по крайней мере один черный шар; б) вынут хотя бы один белый шар; в) первым вынут черный шар; г) последним вынут белый шар.
Обсуждение. Для решения воспользуемся таблицей из предыдущей задачи. Вероятности равны: а) ; б) ; в) ; г) .
I. 4. О смысле формулы вероятности события
Мы вывели эту формулу с помощью некоторых утверждений. Можно ли утверждать, что мы ее доказали, как доказывают теоремы? Нет, конечно. Мы построили модель реального явления (вынимание шаров из урны). Модель подтверждается фактами и экспериментами. А с математической точки зрения формула есть определение вероятности. И эта формула связывает модель с реальным миром.
Задача 4. Брошены независимо друг от друга две правильные игральные кости. Найти вероятности того, что сумма очков на верхних гранях: а) меньше 9; б) больше 7; в) делится на 3; г) четна.
Обсуждение. При бросании двух костей имеется 36 равновозможных исходов, поскольку имеется 6´6 = 36 пар, в которых каждый элемент — целое число от 1 до 6. Составим таблицу (табл. 3), в которой слева число очков на первой кости, вверху — на второй, а на пересечении строки и столбца стоит их сумма.
Òàáë. C
1 |
2 |
3 |
4 |
5 |
6 |
1 |
2 |
3 |
К-во Просмотров: 435
Бесплатно скачать Дипломная работа: Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе
|