Дипломная работа: Высшая математика для менеджеров
Записать в математической форме условия, не позволяющие превысить наличный парк вагонов при формировании пассажирских и скорых поездов, ежедневно отправляемых со станции. Построить на плоскости Oxy область допустимых вариантов формирования поездов.
Решение. Обозначим через x количество пассажирских поездов, а через y - количество скорых. Получим систему линейных неравенств: 5x + 8y £ 80, 6x + 4y £ 72, 3x + y £ 21, x ³ 0, y ³ 0.
Построим соответствующие прямые:
5x + 8y = 80, 6x +4y = 72, 3x + y = 21, x = 0, y = 0,
записав их уравнения в виде уравнений прямых в отрезках: x/16 + y/10 = 1, x/12 + y/18 = 1, x/7 + y/21 = 1, x = 0, y = 0.
Заштрихуем полуплоскости, удовлетворяющие данным неравенствам, и получим область допустимых значений:
y
21
18
10
0 7 12 16 x
Рис. 2
Итак, количество скорых поездов не превышает 10, а пассажирских должно быть не более 7.
Пример 1.13. Имеются два пункта производства (A и B) некоторого вида продукции и три пункта (I, II, III) его потребления. В пункте А производится 250 единиц продукции, а в пункте В - 350 единиц. В пункте I требуется 150 единиц, в пункте II -240 единиц и в пункте III - 210 единиц. Стоимость перевозки одной единицы продукции из пункта производства в пункт потребления дается следующей таблицей.
Таблица 1
Пункт | Пункт потребления | ||
производства | I | II | III |
A | 4 | 3 | 5 |
B | 5 | 6 | 4 |
Требуется составить план перевозки продукции, при котором сумма расходов на перевозку будет наименьшей.
Решение. Обозначим количество продукции, перевозимой из пункта А в пункт I через x , а из пункта А в пункт II - через y . Так как полная потребность в пункте I равна 150 единицам, то из пункта В надо завезти (150 - x) единиц. Точно так же из пункта В в пункт II надо завезти (240 - y) единиц. Далее: производительность пункта А равна 250 единицам, а мы уже распределили (x + y) единиц. Значит, в пункт III идет из пункта А (250 - x -y) единиц. Чтобы полностью обеспечить потребность пункта III, осталось завезти 210 - (250 - x -y) = x + y - 40 единиц из пункта В. Итак, план перевозок задается следующей таблицей.
Таблица 2
Пункт | Пункт потребления | ||
производства | I | II | III |
A | x | y | 250 - x - y |
B | 150 - x | 240 - y | x + y - 40 |
Чтобы найти полную стоимость перевозки, надо умножить каждый элемент этой таблицы на соответствующий элемент предыдущей таблицы и сложить полученные произведения. Получим выражение:
S(x,y) = 4x + 3y + 5 (250 - x - y) + 5 (150 - x) + + 6 (240 -y) + 4 (x + y - 40) = - 2x - 4y +3280.
По условию задачи требуется найти минимум этого выражения. Но величины x и y не могут принимать произвольных значений. Ведь количество перевозимой продукции не может быть отрицательным. Поэтому все числа таблицы 2 неотрицательны:
x ³ 0, y ³ 0, 250 - x - y ³ 0, 150 -x ³ 0, 240 - y ³ 0, x + y - 40 ³ 0. (2.12)
Итак, нам надо найти минимум функции S(x,y) в области, задаваемой системой неравенств (2.12). Эта область изображена на рис.3 - она является многоугольником, ограниченным прямыми:
x = 0, y = 0, 250 - x - y = 0, 150 - x = 0, 240 - y = 0, x + y - 40 = 0.
y
F (0,240) E (10,240)
D (150,100)
(0,40)
О B (40,0) C (150,0) x