Доклад: Теория кодирования в среде MATLAB

Преобразует двоичную порождающую матрицу genmat, представленную в стандартной форме, в соответствующую проверочную матрицу parmat.

genmat = gen2par(parmat)

Преобразует двоичную проверочную матрицу parmat, представленную в стандартной форме, в соответствующую порождающую матрицу genmat.

Пример:

Приведенные ниже команды преобразуют проверочную матрицу для кода Хэмминга в соответствующую порождающую матрицу и обратно.

parmat = hammgen(3)

parmat =

1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1

genmat = gen2par(parmat)

genmat =

1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1

parmat2 = gen2par(genmat) % Результатдолженбытьравен parmat

parmat2 =

1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1

Расчет кодового расстояния для линейного блокового кода

— Синтаксис:

wt = gfweight(genmat); wt = gfweight(genmat,'gen'); wt = gfweight(parmat,'par'); wt = gfweight(genpoly,n);

— Описание:

Кодовое расстояние для линейного блокового кода равно минимальному числу различающихся элементов в произвольной паре кодовых слов.

wt = gfweight(genmat)

Возвращает кодовое расстояние для линейного блокового кода с порождающей матрицей genmat.

wt = gfweight(genmat,'gen')

Возвращает кодовое расстояние для линейного блокового кода с порождающей матрицей genmat.

wt = gfweight(parmat,'par')

Возвращает кодовое расстояние для линейного блокового кода с проверочной матрицей parmat.

wt = gfweight(genpoly,n)

Возвращает кодовое расстояние для циклического кода с длиной кодового слова n и порождающим полиномом genpoly. Параметр genpoly должен быть вектором-строкой, содержащим коэффициенты порождающего полинома в порядке возрастания степеней.

Пример:

Приведенные ниже команды показывают три способа вычисления кодового расстояния для циклического кода (7,4).

К-во Просмотров: 290
Бесплатно скачать Доклад: Теория кодирования в среде MATLAB