Контрольная работа: Алгоритми і методи обчислення
, (1.2)
де - початкове значення амплітуди власних коливань і - початкова фаза власних коливань визначаються початковими умовами руху маятника, а - частота власних коливань та - коефіцієнт загасання власних коливань - це параметри, які визначаються лише параметрами самого маятника і не залежать від інших чинників. Фактично і є шуканими величинами.
4. Величини і є відповідно уявною і дійсною частинами пари комплексно спряжених коренів характеристичного рівняння
, (1.3)
яке випливає з диференційного рівняння (1), тобто корінь рівняння (3) має вигляд:
. (1.4)
У підсумку математично розв'язування задачі 1 зводиться до відшукування комплексних коренів квадратного рівняння (3) і виділенню їхніх дійсної й уявної частин за заданими первісними даними - значеннями параметрів , та .
У задачі 2 треба припустити, що тіло є матеріальною точкою маси , з'ясувати, під дією яких сил відбувається падіння тіла, визначити чинники, що впливають на силу опору, встановити залежність сили опору від цих факторів. Якщо вважати, що на тіло діють сила тяжіння та сила опору, що є пропорційною до швидкості падіння, тобто , то, на основі законів механіки одержимо рівняння , або
. (1.5)
Це диференційне рівняння із врахуванням початкової умови і є математичною моделлю задачі.
У задачі 3 насамперед слід з'ясувати форму ротора, його розміри, розподіл мас, потім виділити у тілі ротора ряд частин, відшукування моментів інерції яких робиться досить просто (циліндри, кільця, конуси тощо). Тоді задача зводиться до обчислень моментів інерції окремих елементарних тіл і їхньому підсумовуванню. Формули обчислення моментів інерції окремих частин ротора і їх підсумовування і складуть математичну модель цієї задачі.
Постановка задачі 4 має містити опис власних параметрів системи "гіроскоп у кардановому підвісі", опис параметрів зовнішніх моментів сил, опис рівнянь руху. Наприклад, рівняння руху гіроскопа для цієї задачі можуть бути взяті у наступному вигляді
. (1.6)
Тут і - кути повороту гіроскопа навколо осей підвісу; та - його моменти інерції, - власний кінетичний момент гіроскопа, - початкове значення кута ; ; ;; ; , - амплітуди змінювання моментів зовнішніх сил; - частота (колова) цього змінювання; , - початкові фази коливань цих моментів.
За математичну модель у цьому випадку може правити сукупність розв'язків рівнянь (6), наведена нижче:
(1.7)
де і - початкові значення кутів визначаються і ; - частота власних (нутаційних) коливань гіроскопа; , , , , , визначаються сукупністю співвідношень:
; ; ; ;
; ; ; ;
- відносна частота коливань моментів сил; і - початкові значення кутових швидкостей і .
Рух гіроскопа за цими співвідношеннями може бути визначений у довільний момент часу.
Але як математичну модель можна також розглядати і первісну систему диференційних рівнянь (6) за вказаних початкових умов.
Складання математичної моделі у прикладній задачі є найбільш складним і відповідальним етапом розв'язування і потребує, окрім істотних знань у спеціальній області, також і математичних і теоретичних знань.
Уже на цьому етапі розв'язування прикладної задачі доводиться нехтувати багатьма реальними процесами, як такими, що незначно впливають на процеси, які вивчаються, абстрагуватися від впливу багатьох чинників. Інакше кажучи, навіть коректно утворена математична модель завжди неповно, лише наближено. відображає реальні процеси. Але при цьому вона набуває риси більшої ясності, прозорості, більш доступна вичерпному дослідженню (із того боку, що підлягає вивченню).
1.5 Математичне моделювання
Модель утворюється задля подальшого її дослідження з метою одержати нові знання про відповідний реальний об'єкт. Таке дослідження вже готової моделі називають моделюванням. Дослідження математичної моделі називатимемо математичним моделюванням.