Контрольная работа: Анализ стационарных и динамических объектов
Аналогично проводим вычисления для N=32 и сохраняем листинг с результатами в другом файле 5_3_32.mcd.
5) При увеличении точности (N) гладкость графиков улучшается, но общее поведение объектов не изменяется.
То, что мы набрали (листинг программы) в рабочей области программы для N=8 и сохранили в файле 5_3_8.mcd можно просмотреть в файле 5_3_8.rtf.
То, что мы набрали (листинг программы) в рабочей области программы для N=32 и сохранили в файле 5_3_32.mcd можно просмотреть в файле 5_3_32.rtf.
Вывод: из полученных результатов видим, что вышеупомянутые зависимости нелинейны, что представлено графически.
Задание на контрольную работу
по дисциплине “Основы системного анализа объектов и процессов компьютеризации ”
Анализ стационарных и динамических объектов
Этапы выполнения работы:
изучить теоретические положения, раскрывающие структуру линейных и нелинейных стационарных и динамических объектов, математическое описание и решение задачи анализа такого рода объектов;
выполнить индивидуальное задание согласно предусмотренной последовательности выполнения работы;
оформить описание контрольной работы.
Перечень документов, входящих в контрольную работу
1. Задание на контрольную работу
2. Пояснительная записка
3. Приложения
Содержание пояснительной записки
Структуры исследуемых стационарных линейного, нелинейного и динамического объектов, их свойства, параметры и математическое описание. Решение задачи анализа объектов. Методы и алгоритмы решения систем линейных и нелинейных алгебраических уравнений, обыкновенных дифференциальных уравнений и систем уравнений. Описания программ решения в системе MathCAD. Выводы.
Примечание : объем пояснительной записки должен быть не менее 15 стр.
Состав приложений
Приложение 1. Листинг программы решения задачи анализа стационарного линейного объекта с графиками и комментариями, поясняющими использование в программе констант, переменных, массивов, векторов, матриц, функций и т.д.
Приложение 2. Листинг программы решения задачи анализа стационарного нелинейного объекта с графиками и комментариями, поясняющими использование в программе констант, переменных, массивов, векторов, матриц, функций и т.д.
Приложение 3. Листинг программы решения задачи анализа динамического объекта с графиками и комментариями, поясняющими использование в программе констант, переменных, массивов, векторов, матриц, функций и т.д.
1. Анализ линейных стационарных объектов
Цель работы : исследовать параметры линейных стационарных объектов, описываемых системами линейных алгебраических уравнений, используя для их решения средства матричной алгебры и специальные функции системы математических расчетов MathCAD.
Содержание работы :
1) изучить теоретические положения (раздел 1.1), раскрывающие структуру линейных объектов, их математическое описание и решение задачи анализа такого рода объектов;
2) выполнить индивидуальное задание согласно предусмотренной в разд.1.2 последовательности выполнения работы;
3) оформить описание раздела по контрольной работе согласно требованиям задания.
1.1. Краткие теоретические сведения
1.1.1. Иерархические уровни описания объектов
Описания технических объектов должны быть по сложности согласованы с возможностями восприятия человеком и возможностями оперирования описаниями в процессе их преобразования с помощью имеющихся средств проектирования. Однако выполнить это требование в рамках некоторого единого описания, не разделяя его на некоторые составные части, удается лишь для простых изделий. Как правило, требуется структурирование описаний и соответствующее разделение представлений о проектируемых объектах на иерархические уровни и аспекты.
Разделение описаний по степени детализации отображаемых свойств и характеристик объекта лежит в основе блочно-иерархического подхода к проектированию и приводит к появлению иерархических уровней в представлениях о проектируемом объекте.
На каждом иерархическом уровне используются свои понятия системы и элементов.
![]() |
На уровне 1 (верхнем уровне) подлежащий проектированию сложный объект S рассматривается как система S из n взаимосвязанных и взаимодействующих элементов