Контрольная работа: Анализ стационарных и динамических объектов
Обозначим количества выходных Si . Каждый из элементов в описании уровня 1 представляет собой сложный объект, который, в свою очередь, рассматривается как система Si на уровне 2. Элементами систем Si являются объекты Sij , где j=1,2…, mi (mi – количество элементов в описании системы Si ). Подобное разделение продолжается вплоть до получения на некотором уровне элементов, описания которых дальнейшему делению не подлежат. Такие элементы по отношению к объекту S называют базовыми элементами .
1.1.2. Классификация параметров объектов
Внутренних и внешних параметров через m, n, l, а векторы этих параметров соответственно через Y=(y1 ,y2 ,…,ym ), X=(x1 ,x2 ,…,xn ), Q=(q1 ,q2 ,…,ql ). Свойства системы зависят от внутренних и внешних параметров, т.е. имеет место функциональная зависимость:
Y=F(X,Q). (1.1)
1.1.3. Структура и математическая модель объекта
Структура объекта – это перечень типов элементов, составляющих объект, и способа связи элементов между собой в составе объекта.
Математическая модель (ММ) технического объекта – это система математических объектов (чисел, переменных, матриц, множеств и т.п.) и отношений между ними, отражающая некоторые свойства технического объекта. Наличие ММ позволяет легко оценивать выходные параметры по известным значениям векторов X и Q. Такая система соотношений (1) является примером математической модели объекта. Однако, существование зависимости (1.1) не означает, что она известна разработчикам и может быть представлена именно в таком явном относительно вектора Y виде. Как правило, ММ в виде (1.1) удается получить только для очень простых объектов. Типичной является ситуация, когда математическое описание процессов в проектируемом объекте задается моделью в форме системы уравнений. Ряд технических объектов в установившемся (стационарном) состоянии (режиме) может быть описан системами линейных алгебраических уравнений.
Такого рода объекты (например, объект, показанный на рис 1.1) относятся к классу линейных стационарных объектов.
|
|
|
|
Рис. 1.1. Структура линейного стационарного объекта
Структура данного объекта определяется двумя сумматорами S1 и S2 , четырьмя линейно– усилительными блоками а11 , а12 , а21 , а22 и системой связей между ними.
Математическая модель такого рода объекта представляет собой систему линейных алгебраических уравнений и имеет вид:
а11 х1 +а12 х2 =в1 ;
а21 х1 +а22 х2 =в2 ;
1.1.4. Анализ объектов
Задача анализа объектов состоит в определении свойств и исследовании работоспособности объекта по его описанию.
При одновариантном анализе задаются значения внутренних и внешних параметров, требуется определить значения выходных параметров объекта.
При одновариантном анализе задается также некоторая точка в пространстве внутренних параметров и требуется в этой точке определить значения выходных параметров. Подобная задача обычно сводится к однократному решению уравнений, составляющих математическую модель, что и обусловливает название этого вида анализа.
Многовариантный анализ заключается в исследовании свойств объекта в некоторой области пространства внутренних параметров. Такой анализ требует многократного решения систем уравнений (многократного выполнения одновариантного анализа).
Задача, ставящаяся при анализе (исследовании) такого рода объектов (рис 1.1), может иметь следующий вид: необходимо определить значения входных воздействий х1 и х2 при заданной структуре объекта, определяемой системой связей, и заданных значениях внутренних параметров, при которых выход объекта имел бы требуемые выходные значения в1 и в2 .
1.1.5. Решение систем линейных алгебраических уравнений
1.1.5.1. Постановка задачи. Система n линейных алгебраических уравнений (СЛАУ) с n неизвестными имеет вид:
(1.2)
– неизвестные числа, подлежащие определению;
– коэффициенты системы;
– свободные члены.
Первый индекс коэффициента указывает номер уравнения, в котором фигурирует данный коэффициент (номер строки), а второй – номер неизвестного, при котором этот коэффициент поставлен (номер столбца). Коэффициенты системы, как и свободные члены, предполагаются известными.
Решением системы (или ее корнями) называется всякая совокупность чисел, , которая, будучи подставлена в систему вместо неизвестных , обращает все уравнения системы в тождества. Отметим, что совокупность чисел составляет одно решение системы, а не n решений.
В матричной форме система может быть записана как
(1.3)
или в обобщенной форме: (1.4)
1.1.5.2. Классификация методов решения. На практике применяют два типа методов:
– прямые или точные;