Контрольная работа: Аналіз стійкості процесів в нелінійній схемі
Нагадаємо, в рядах Фур’є для і
члени при
дорівнюють нулю.
Після елементарних перетворювань маємо
.
Покладемо . Тоді
.
Складена лінійна комбінація лінійно незалежних функцій може дорівнювати нулю тільки при перетворенні в нуль кожного співмножника, взятого в фігурні дужки:
, (10)
Отримали для спектральних складових напруги нескінечнну систему алгебраїчних рівнянь з нульовою правою частиною. Щоб рішення системи не було нульовим, треба вимагати рівності нулю її головного визначника
. Цей нескінченний визначник зветься визначником Хілла. Він залежить від
, що і дає шукане рівняння:
.
Нехай - елемент визначника, належний до k-го рядка та m-го стовпця. Із (10) можна отримати
, (11)
.
За допомогою (11) знайдемо, що елементи головної діагоналі (k=m) дорівнюють одиниці.
Використовуючи (11), можна встановити наступну властивість: заміна на
не змінює значення визначника
.
Це виникає тому, що змінивши нумерацію рядків після вказаного підставлення, отримаємо той самий визначник.
З цієї властивості витікає: якщо - корінь визначника, то коренями будуть
. Отже, визначник має нескінченне число коренів. Встановлено, що кожному комплексному кореню відповідає комплексно-спряжений.
Нескінченний визначник Хіла вдалося звести до виразу, який для (9) має вигляд:
, (12)
де - корені знаменика z(p) в (9),
n – порядок рівняння (9),
- безкінечні чисельні визначники, не вміщаючи
, які знаходяться із наступного рівняння:
. (13)
Значення чисельних визначників можна розраховувати із наперед заданою точністю. Доведено, що в сумі вони дорівнюють нулю.
Наприкінці визначимо суть полінома, вхідного до знаменника опору в рівнянні (9). Із виразу
витікає, що цей – опір між точками вмиканняння елементів з періодично змінними параметрами, в який увійшли середні значення змінної провідності та ємності. Знайти цей опор можна, підімкнувши до відповідних точок джерело струму , визначивши викликану ним напругу v та використав рівність
. Звідки визначимо, що
- характеристичний поліном схеми для малих збурень, в якій
. Цю схему назвемо усередненою, оскільки вона крім лінійних елементів вміщає середнє значення періодично змінних провідностей та ємностей.
4. Зв’язок розрахунку періодичного режиму із аналізом стійкості