Контрольная работа: Аналіз стійкості процесів в нелінійній схемі
2. Перш ніж розглядати другий алгоритм, встановимо, яким умовам підпорядковано годограф визначника Хіла при стійкому та нестійкому періодичному режимі. Скористаємось формулою (14) і врахуємо такі обставини (рис. 1):
Рисунок 1 – До виводу критерію стійкості на основі годографа визначника Хіла
уявну вісь на площині характеристичних показників визначає вираз ;
перетворення трансформує цю вісь в коло одиничного радіуса площини мультиплікаторів; при цьому ліві характеристичні показники переходять до внутрішніх точок кола одиничного радіуса, тобто в мультіплікатори з модулем, менше одиниці; коли дійсна частина характеристичного показника дорівнює нулю, а уявна змінюється в межах
. (15)
Кінець вектора проходить проти часової стрілки все коло одиничного радіуса від точки ; при зміні в великих межах кінець вектора пройде по колу одиничного радіуса декілька разів.
Наше завдання – знайти кут повороту годографа при зміні в межах, визначених (15), та в умовах, коли всі мультиплікатори лежать усередині одиничного кола. Поворот годографа залежить ще від розташування мультиплікаторів усередненої системи, оскільки визначник Хіла є відношення двох характеристичних поліномів. Тому будемо вирішувати задачу при припущенні, що всі знаходяться усередині одиничного кола. Нехай
і , лежать усередині одиничного кола. Кінець вектора рухається по одиничному колу. Поворот його на кут змушує повернутися вектори та на кути і , при цьому кут вектора змінюється на величину, рівну різності . Коли вектор зробить повний оберт, то і кут повороту буде дорівнювати нулю. Припустимо тепер, що мультиплікатор розташовується зовні одиничного кола (рис.1, б), а - як і раніше, усередині. Тоді видно, що при . Результуючий кут повороту стане рівним . Узагальнюючи на випадок відношення поліномів вільної ступені, може бути сформульован критерій стійкості періодичного режиму: якщо годограф нескінченного визначника Хіла при , зміні в межах, заданих (15), та при лівих коренях усередненої системи не охоплює початок координат, то періодичний режим в нелінійної схемі стійкий; охват годографом початку координат свідчить про нестійкий періодичний режим.
2. Зараз можна описати другий алгоритм методу, спираючогося на нескінченний визначник Хіла. Шукані дані ті самі, що і для першого алгоритму, а послідовність розрахунка така:
- вибір значення частоти;
- розрахунок фази ;
- складення с попередніми значеннями фази;
- перехід до нового значення частоти та повтор розрахунку;
- розрахунки завершуються при виході частоти за межі, обмежені нерівностями (15).
На вибір алгоритму із числа розглянутих впливає ряд факторів. Наприклад, ефективність програми чисельного інтегрування та програми обчислення визначника і т.і. Перший метод – чисельне інтегрування рівнянь для малих збурень з метою визначення елементів характеристичної матриці – зручний тим, що він використовує засоби, використані для розрахунку періодичного режиму. Однак остаточне рішення залежить від конкретних умов.
6. Аналіз стійкості періодичного режиму, розрахованого спектральним методом
В спектральному методі розрахунку періодичного режиму ураховується N гармонік, тому для аналізу використовується кінцевий визначник Хіла. Звичайно прийняти кількість рядків та стовпців в ньому рівним , тобто кількості рівнянь стаціонарного режиму.
Скінченний визначник Хіла втрачає періодичність по . В зв’язку з цим уявляється, що характеристичні показники уже немають властивості, яка виявлялось раніш: якщо - корінь визначника, то коренями будуть і . Однак, скориставшись (11) та розкривши визначник, можна, після приведення до загального знаменника, отримати
, (16)
де L і T – поліноми від степені n(2N+1), на що вказують нижні індекси,
n – порядок схеми.
Причому з процедури розкриття визначника і подальших перетворень можна знайти
.
Це указує на те, що у полінома знаменника корені проявляють ту саму властивість, як і полюси нескінченного визначника. Звідси витікає, що обговорювана властивість може мати місце і тоді, коли визначник неперіодичний. Мабуть, така властивість є і у характеристичних показників визначника, тобто у коренів полінома чисельника в (16). До жалю, цей факт поки не доведено. Якщо це вдалось би зробити, то з’явились можливость працювати над методом аналізу стійкості, спираючись на розрахунок характеристичних показників. Його алгоритм можна було подати в такому вигляді: розрахунок n близько розташованих коефіцієнтів полінома та визначення по ним, на основі вказаної властивості коренів, коефіцієнтів полінома степені n. Наскільки важливо зниження степені полінома для характеристичних показників, видно з наступного прикладу. Нехай порядок системи рівнянь для схеми дорівнює 15, що ще припускає надійне обчислення коренів полінома. Якщо при розрахунку періодичного режиму враховані тільки три гармоніки, то прийдеться мати справу с поліномом ступеня .
Обміркуємо можливість використання алгоритмів, які відносилися до нескінченного визначника Хіла.
Розрахунок по формулі (14) тепер спрощується із-за скінченої розмірності визначника. Однак немає впевненості, що до (14) можна привести скінченний визначник. Недоведення цього факту народжує сумління в точності аналізу. Оскільки видно, що лише в границі, при , формула (14) точна.
Таким чином, аналіз стійкості періодичного режиму, при використанні скінченого визначника Хіла, утруднюється внаслідок не вирішення ряду питань.