Контрольная работа: Аппроксимация функций 2
end
x=sum(Pn,2);
_____________________________________________________________
i=0;
for p=11:0.05:12
i=i+1;
a=0.5+i*0.5;
x1(i)=p;
ff(i)=Nuton_nz(a,x,y);
end
% Построениеграфика
subplot(2,1,2); plot(x1,ff,'.-'); ylabel('y'); xlabel('x'); grid on
title('Интерполяция многочленом Ньютона назад')
Рис. 4. Интерполяция многочленом Ньютона назад
4. Квадратичная сплайн-интерполяция
Для того, чтобы выполнить квадратичную сплайн-интерполяцию по 6-ти узлам, необходимо задаться пятью уравнениями.
Рис. 5. К выводу коэффициентов при сплайн-интерполяции
При квадратичном сплайне уравнения будут иметь вид:
, .
На эти уравнения наложены следующие граничные условия:
, , , .
Вычислим производную
: , . (1)
Определим при : , . (2)
В рассматриваемом примере . С учетом этого, а также с учетом выражения (2) и условия , запишем следующую зависимость:
, .
Из условия и выражения (1) получим: .