Контрольная работа: Дедуктивные умозаключения
Современная символическая логика для анализа дедуктивных рассуждений строит особые логические системы; одна из них называется логикой высказываний или пропозициональной логикой, другая — логикой предикатов. Рассмотрим кратко принципы построения логики высказываний.
Логика высказываний — это логическая система, которая анализирует процессы рассуждения, основанные на характере связей между простыми суждениями, но без учета их внутренней структуры.
Язык логики высказываний включает: алфавит, определение правильно построенных выражений, интерпретацию.
Алфавит логики высказываний состоит из следующих символов.
Символы для высказываний: р, q, r,... (пропозициональные переменные).
Символы для логических связок:
(3) Технические знаки (,) — скобки.
Допустимые в логике высказываний выражения, называемые правильно построенными формулами или сокращенно ППФ, вводятся следующим определением:
1. Всякая пропозициональная переменная — р, q, r, ... является ППФ.
2. Если А и В — ППФ (А и В — символы метаязыка, выражающие любые формулы), то выражения — АВ, AВ, А→В, АВ, ˉ|А также являются ППФ.
Все другие выражения, помимо предусмотренных п. 1 и 2, не являются ППФ языка логики высказываний.
Логика высказываний может строиться табличным методом или как исчисление, т. е. как система, позволяющая получать из одних формул другие.
Табличное построение предполагает семантические определения пропозициональных связок в виде матриц, показывающих зависимость истинного значения сложных формул от значений их составляющих простых формул. Если А и В простые формулы, то истинное значение построенных с помощью логических связок сложных формул может быть представлено матричным способом — в виде таблицы.
Среди правильно построенных формул в зависимости от их истинностного значения различают тождественно истинные, тождественно ложные и выполнимые формулы.
Тождественно истинными называют формулы, принимающие значения истины при любых — истинных или ложных — значениях составляющих их пропозициональных переменных. Такие формулы представляют собой законы логики.
Тождественно ложными называют формулы, принимающие значение лжи при любых — истинных или ложных — значениях пропозициональных переменных.
Выполнимыми называют формулы, которые могут принимать значения истины или лжи в зависимости от наборов значений составляющих их пропозициональных переменных.
Табличное построение предполагает определение логических отношений между формулами. Существенное значение для анализа рассуждений имеет отношение логического следования (символ├), которое определяется следующим образом. Из Ai,..., An как посылок логически следует В как заключение, если при истинности каждого Ai, ..., Ап истинным является и В. В языке-объекте отношение следования адекватно выражается импликацией. Значит, если A1,..., Аn ,├ В, то формула, представляющая собой импликацию вида (A1 ^ А2 ^ ... ^ Аn) → В, должна быть тождественно истинной.
Табличное построение логики высказываний позволяет определять логические отношения между высказывания и проверять правильность умозаключений, используя приведенный выше критерий. В качестве примера предлагаем провести табличным способом проверку правильности рассуждения формы (p→q) ├ (ˉ|q→ˉ|p). Заменив знак логического следования между посылкой и заключением на импликацию и построив таблицу для полученной формулы, видим, что она является тождественно истинной. Значит, рассуждение является правильным.
Если в рассуждении содержится более трех переменных, то строить полную таблицу для проверки его правильности затруднительно и тогда используют сокращенный метод проверки, рассуждая от противного. Поскольку при правильном рассуждении формула вида (A1 ^ ... ^ Аn) → В должна быть тождественно истинной, посмотрим, не может ли она при каком-то наборе значений переменных оказаться ложной. Предположим, что может. Если из этого предположения получим какое-нибудь противоречие, то предположение неверно (и проверяемое рассуждение правильно), а если из этого предположения не получим противоречия, то увидим набор значений переменных, при котором формула ложна, т. е. тот набор, который опровергает проверяемое рассуждение.
Логика высказываний как исчисление — это прежде всего так называемая система натурального вывода (СНВ). Аппаратом в ней служат правила вывода, каждое из которых является какой-нибудь элементарной формой умозаключения. Переходя по этим правилам от посылок или некоторых допущений к новым формулам, постепенно доходят до заключения. Вывод из посылок осуществлен, если удалось элиминировать все сделанные допущения. Таким образом, под выводом формулы В (заключения) из формул A1 – An (посылок) имеется в виду последовательность формул, каждая из которых является либо посылкой, либо допущением, либо получается по правилам вывода из предыдущих и последняя формула этой последовательности есть формула В, а все допущения при этом элиминированы.
Правила СНВ позволяют оперировать со всеми связками, имеющимися в алфавите языка. Они делятся на правила введения (в) и правила исключения (и) связок.
Кроме этих прямых правил получения новых строк вывода, в СНВ приняты непрямые правила, определяющие стратегию построения вывода. Например, если нужно вывести из посылок формулу вида импликации (Х1→(X2 →... (Xn-1→Xn))), то после выписывания посылок выписываются в качестве допущений все антецеденты заключения, начиная с антецедента главного знака импликации, т. е. Х1,X2, X3...,Xn-1. Если при этом удастся вывести Xn, то по непрямому правилу
собираем последовательно формулы: (Xn-1→Xn)
(при этом исключается допущение Xn-1), (Xn-2→(Xn-1→Xn)(Xn-2 исключается из числа допущений) и т. д., пока ни получим требуемое заключение
X1→(Xn-2→…(Xn-1→Xn).