Контрольная работа: Дедуктивные умозаключения
Приведем пример вывода с применением этого правила:
((рq)→r)├ (р→ (q├ r))
Другое непрямое правило используется для построения косвенного вывода, при котором допущением является отрицание В или отрицание последнего консеквента х„. Это правило имеет вид
и говорит о том, что если из каких-то формул (r) и допущения (А) получено противоречие (В ˉ|В), то из этих формул следует ˉ|А. Таким образом, если строится косвенный вывод формулы вида (X1→(X2→... (Xn-1→X n)...), то после посылок выписываются формулы:
Затем по правилам вывода получаем следствия из всех имеющихся посылок и допущений до тех пор, пока ни получим две противоречащие друг другу формулы (В и ˉ|В), что свидетельствует о несовместимости допущения косвенного доказательства с другими допущениями и посылками. Отсюда делается вывод о его ложности. Тогда в вывод вписывается строка ˉ|ˉ|Xnи тем самым допущение косвенного доказательства исключается. Например, осуществим косвенный вывод:
Косвенный вывод считается законченным, если в ходе вывода получена какая-то формула и ее отрицание, т. е. противоречие. Таким образом, если строится косвенный вывод формулы вида X1→(X2→...Xn), то построчно выписывают все антецеденты от X1 до Xn-1 в качестве допущений; в последней строчке выписывают отрицание последнего консеквента — ˉ|Xn как допущение косвенного вывода. По правилам вывода получаем различные следствия из всех имеющихся посылок и допущений. Получение двух противоречащих следствий говорит о ложности допущения косвенного вывода. На этом основании ДКД отрицается, т. е. получаем двойное отрицание. Снятие двойного отрицания дает формулу Xn.
Основными логическими свойствами системы натурального вывода являются ее непротиворечивость и полнота.
Непротиворечивость означает, что из истинных посылок могут получаться только истинные следствия и если формула выводима из пустого множества посылок, то она тождественно истинна. Это исключает возможность вывести из пустого множества посылок какую-либо формулу (А) и ее отрицание (ˉ|А). Полнота системы означает, что дедуктивных ее средств достаточно, чтобы вывести из пустого множества посылок любую тождественно истинную формулу.
Логика предикатов является более общей логической системой и включает логику высказываний как свою часть. Она располагает более эффективными логическими средствами для анализа рассуждений в естественном языке.
Задачі
1. Чи правильно визначені відношення між поняттями:
А - фінансист;
В - державний службовець;
С – спортсмен;
Д – студент?
Відповідь:
Поняття А, В, С і Д є порівнянні поняття, тому що спільне в них визначення особи, яка займається трудовою діяльністю, є родовою ознакою.
Із них сумісними поняттями є А і В (загальна видова ознака – наявність обов`язкової вищої освіти), С і Д (загальна видова ознака – надання права одночасно вчитись та професійно займатись спортом).
Поняття А і В несумісні з поняттям С, тому що для фінансиста заняття професійним спортом означає не заняття фінансами (прикладів суміщення в практиці не має), для державного службовця іншою професійною діяльністю (крім навчання і науково-педагогічної діяльності) заборонено законом.
Поняття А і В несумісні з поняттям Д, тому що поставлене питання розглядається в контексті однієї по кількості вищої освіти, тобто наявність вищої освіти виключає можливість навчання.
Таким чином, кола А і В не повинні пересікатись з колами С і Д.
Розглянемо сумісні поняття А і В.
В наведеному завдання між цими загальними поняттями існує відношення перехрещення, тому що їх видові ознаки не заперечу?