Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей

Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= ta K . Тогда интервальная оценка будет иметь вид:

(1.4.),

Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:

(1.5.),

или

(1.6.),

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:


(1.7.),

где yt - фактические значения уровней ряда,

- расчетные значения уровней ряда,

n - длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sy , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 1.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 1.1. приведены значения К* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n ) значения К* уменьшаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n : чем больше длина ряда, тем меньшее влияние оказывает период упреждения L .

Таблица 1.1.

Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд Параболический тренд
Длина ряда (п)

Период упреждения (L)

1 2 3

длина ряда (п)

период упреждения (L)

1 2 3

7 2,6380 2,8748 3,1399 7 3,948 5,755 8,152
8 2,4631 2,6391 2,8361 8 3,459 4,754 6,461
9 2,3422 2,4786 2,6310 9 3,144 4,124 5,408
10 2,2524 2,3614 2,4827 10 2,926 3,695 4,698
11 2,1827 2,2718 2,3706 11 2,763 3,384 4,189
12 2,1274 2,2017 2,2836 12 2,636 3,148 3,808
13 2,0837 2,1463 2,2155 13 2,536 2,965 3,516
14 2,0462 2,1000 2,1590 14 2,455 2,830 3,286
15 2,0153 2,0621 2,1131 15 2,386 2,701 3,100
16 1,9883 2,0292 2,0735 16 2,330 2,604 2,950
17 1,9654 2,0015 2,0406 17 2,280 2,521 2,823
18 1,9455 1,9776 2,0124 18 2,238 2,451 2,717
19 1,9280 1,9568 1,9877 19 2,201 2,391 2,627
20 1,9117 1,9375 1,9654 20 2,169 2,339 2,549
21 1,8975 1,9210 1,9461 21 2,139 2,293 2,481
22 1,8854 1,9066 1,9294 22 2,113 2,252 2,422
23 1,8738 1,8932 1,9140 23 2,090 2,217 2,371
24 1,8631 1,8808 1,8998 24 2,069 2,185 2,325
25 1,8538 1,8701 1,8876 25 2,049 2,156 2,284

Глава 2. Практическая часть

Задание 1.5. Использование адаптивных методов в экономическом прогнозировании

1. Рассчитать экспоненциальную среднюю для временного ряда курса акций фирмы ЮМ. В качестве начального значения экспоненциальной средней взять среднее значение из 5 первых уровней ряда. Значение параметра адаптации а принять равным 0,1.

Таблица 1.2.

Курс акций фирмы IBM

t yt t yt t yt
1 510 11 494 21 523
2 497 12 499 22 527
3 504 13 502 23 523
4 510 14 509 24 528
5 509 15 525 25 529
6 503 16 512 26 538
7 500 17 510 27 539
8 500 18 506 28 541
9 500 19 515 29 543
10 495 20 522 30 541

К-во Просмотров: 184
Бесплатно скачать Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей