Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей
Содержание
Глава 1. Теоретическая часть. 3
Глава 2. Практическая часть. 9
Список используемой литературы.. 13
Глава 1. Теоретическаячасть
Доверительные интервалы прогноза. Оценка адекватности и точности моделей
1.1 Доверительные интервалы прогноза
Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t , соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.
На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.
Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:
1. субъективной ошибочностью выбора вида кривой;
2. погрешностью оценивания параметров кривых;
3. погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.
Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:
(1.1.),
где n- длина временного ряда;
L -период упреждения;
yn + L -точечный прогноз на момент n+L;
ta - значение t-статистики Стьюдента;
Sp - средняя квадратическая ошибка прогноза.
Предположим, что тренд характеризуется прямой:
Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра ао приводит к вертикальному сдвигу прямой, погрешность параметра a1 - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию можно представить в виде:
(1.2.),
где - дисперсия отклонений фактических наблюдений от расчетных;
t 1 - время упреждения, для которого делается экстраполяция;
t1 = n + L ;
t - порядковый номер уровней ряда, t = 1,2,..., n;
- порядковый номер уровня, стоящего в середине ряда,
Тогда доверительный интервал можно представить в виде:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--