Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей
Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= ta K . Тогда интервальная оценка будет иметь вид:
(1.4.),
Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:
(1.5.),
или
(1.6.),
Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:
(1.7.),
где yt - фактические значения уровней ряда,
- расчетные значения уровней ряда,
n - длина временного ряда,
k - число оцениваемых параметров выравнивающей кривой.
Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.
Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sy , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения
Рисунок 1.1. Доверительные интервалы прогноза для линейного тренда
Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.
По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).
В таблице 1.1. приведены значения К* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n ) значения К* уменьшаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n : чем больше длина ряда, тем меньшее влияние оказывает период упреждения L .
Таблица 1.1.
Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).
Линейный тренд | Параболический тренд | ||
Длина ряда (п) |
Период упреждения (L) 1 2 3 | длина ряда (п) |
период упреждения (L) 1 2 3 |
7 | 2,6380 2,8748 3,1399 | 7 | 3,948 5,755 8,152 |
8 | 2,4631 2,6391 2,8361 | 8 | 3,459 4,754 6,461 |
9 | 2,3422 2,4786 2,6310 | 9 | 3,144 4,124 5,408 |
10 | 2,2524 2,3614 2,4827 | 10 | 2,926 3,695 4,698 |
11 | 2,1827 2,2718 2,3706 | 11 | 2,763 3,384 4,189 |
12 | 2,1274 2,2017 2,2836 | 12 | 2,636 3,148 3,808 |
13 | 2,0837 2,1463 2,2155 | 13 | 2,536 2,965 3,516 |
14 | 2,0462 2,1000 2,1590 | 14 | 2,455 2,830 3,286 |
15 | 2,0153 2,0621 2,1131 | 15 | 2,386 2,701 3,100 |
16 | 1,9883 2,0292 2,0735 | 16 | 2,330 2,604 2,950 |
17 | 1,9654 2,0015 2,0406 | 17 | 2,280 2,521 2,823 |
18 | 1,9455 1,9776 2,0124 | 18 | 2,238 2,451 2,717 |
19 | 1,9280 1,9568 1,9877 | 19 | 2,201 2,391 2,627 |
20 | 1,9117 1,9375 1,9654 | 20 | 2,169 2,339 2,549 |
21 | 1,8975 1,9210 1,9461 | 21 | 2,139 2,293 2,481 |
22 | 1,8854 1,9066 1,9294 | 22 | 2,113 2,252 2,422 |
23 | 1,8738 1,8932 1,9140 | 23 | 2,090 2,217 2,371 |
24 | 1,8631 1,8808 1,8998 | 24 | 2,069 2,185 2,325 |
25 | 1,8538 1,8701 1,8876 | 25 | 2,049 2,156 2,284 |
Глава 2. Практическая часть
Задание 1.5. Использование адаптивных методов в экономическом прогнозировании
1. Рассчитать экспоненциальную среднюю для временного ряда курса акций фирмы ЮМ. В качестве начального значения экспоненциальной средней взять среднее значение из 5 первых уровней ряда. Значение параметра адаптации а принять равным 0,1.
Таблица 1.2.
Курс акций фирмы IBM
t | yt | t | yt | t | yt |
1 | 510 | 11 | 494 | 21 | 523 |
2 | 497 | 12 | 499 | 22 | 527 |
3 | 504 | 13 | 502 | 23 | 523 |
4 | 510 | 14 | 509 | 24 | 528 |
5 | 509 | 15 | 525 | 25 | 529 |
6 | 503 | 16 | 512 | 26 | 538 |
7 | 500 | 17 | 510 | 27 | 539 |
8 | 500 | 18 | 506 | 28 | 541 |
9 | 500 | 19 | 515 | 29 | 543 |
10 | 495 | 20 | 522 | 30 | 541 |