Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей

3. Прогнозирование курса акций фирмы IBM осуществлялось на основе адаптивной полиномиальной модели второго порядка


,

где - период упреждения.

На последнем шаге получены следующие оценки коэффициентов:

Рассчитать прогноз курса акций:

• на 1 день вперед (=1);

• на 2 дня вперед (=2).

Решение задания 1.5

1. Определим

Найдем значения экспоненциальной средней при а =0,1.

. а =0,1 – по условию;

; S1 = 0,1 х 510 + 0,9 х 506 = 506,4;

; S2 = 0,1 х 497 + 0,9 х 506,4 = 505,46;

; S3 = 0,1 х 504 + 0,9 х 505,46 = 505,31 и т.д.

Результаты расчетов представлены в таблице 1.3.

2.

а =0,5 – по условию.

; S1 = 0,5 х 510 + 0,5 х 506 = 508;

; S2 = 0,5 х 497 + 0,5 х 508 = 502,5 и т.д.

Результаты расчетов представлены в таблице 1.3.

Таблица 1.3.

Экспоненциальные средние

t Экспоненциальная средняя t Экспоненциальная средняя
а =0,1 а =0,5 а =0,1 а =0,5
1 506,4 508 16 505,7 513,3
2 505,5 502,5 17 506,1 511,7
3 505,3 503,2 18 506,1 508,8
4 505,8 506,6 19 507,0 511,9
5 506,1 507,8 20 508,5 517
6 505,8 505,4 21 509,9 520
7 505,2 502,7 22 511,6 523,5
8 504,7 501,4 23 512,8 523,2
9 504,2 500,7 24 514,3 525,6
10 503,4 497,8 25 515,8 527,3
11 502,4 495,9 26 518,0 532,7
12 502,0 497,5 27 520,1 525,8
13 502,0 499,7 28 522,2 538,4
14 502,7 504,4 29 524,3 540,7
15 505,0 514,7 30 525,9 540,9

Рисунок 1.2. Экспоненциальное сглаживание временного ряда курса акций: А – фактические данные; В – экспоненциальная средняя при альфа = 0,1; С – экспоненциальная средняя при альфа = 0,5

При а =0,1 экспоненциальная средняя носит более гладкий характер, т.к. в этом случае в наибольшей степени поглощаются случайные колебания временного ряда.

3. Прогноз по адаптивной полиномиальной модели второго порядка формируется на последнем шаге, путем подстановки в уравнение модели последних значений коэффициентов и значения - времени упреждения.

Прогноз на 1 день вперед (= 1):

К-во Просмотров: 186
Бесплатно скачать Контрольная работа: Доверительные интервалы прогноза. Оценка адекватности и точности моделей