Контрольная работа: Эконометрическое моделирование расчет коэффициентов корреляции и регрессии, анализ одномерного
8,393933
Из таблицы (3) видно что для всех коэффициентов матрицы tнабл > tрасч, следовательно все коэффициенты корреляции статистически значимы. Между параметрами Y и X3 наиболее тесная статистическая взаимосвязь.
2) Построение поля корреляции результативного признака и наиболее тесно связанного с ним фактора.
Поле корреляции имеет вид, приведенный на рис.1. Вытянутость облака точек на диаграмме рассеяния вдоль наклонной прямой позволяет сделать предположение, что существует некоторая объективная тенденция прямой линейной связи между значениями переменных Х3 и Y.
3) Расчет параметров линейной парной регрессии для каждого фактора Х.
Для расчета коэффициентов регрессии используем инструмент регрессия (Анализ данных в Excel)
|
Коэффициенты |
Y-пересечение |
117,504 |
X1 |
-41,484 |
|
Коэффициенты |
Y-пересечение |
13,212 |
X2 |
33,516 |
|
Коэффициенты |
Y-пересечение |
-13,109 |
X3 |
1,543 |
Модели линейной регрессии будут иметь вид:
для Х1 - Y = 117,504 – 41,484 X1
для Х2 - Y = 13,212 + 33,516 X2
для Х3 - Y = -13,109 + 1,543 X3
4) Оценка качества каждой модели через коэффициент детерминации, средней ошибки аппроксимации и F-критерия Фишера. Выбор лучшей модели.