Контрольная работа: Элементы алгебры и геометрии


Первую строку умножим на 3 и вычтем из неё вторую, первую умножим на 5 и вычтем из неё третью:

Вычтем из второй строки – третью:

Ранг матрицы

Запишем расширенную матрицу

Найдем определитель расширенной матрицы. Поменяем местами первую и вторую строки:

Умножим первую строку на 3 и вычтем из неё вторую, умножим первую строку на 5 и вычтем из неё третью:

Вычтем из второй строки третью:


Ранг расширенной матрицы

Ранг расширенной матрицы системы не равен рангу матрицы системы, значит система несовместна (не имеет решений).

Задание № 54

Даны координаты точек А (х11 ) и В (х22 ) и радиус окружности R, центр которой находится в начале координат.

Требуется:

1) составить каноническое уравнение эллипса, проходящего через данные точки А и В;

2) найти полуоси, фокусы и эксцентриситет этого эллипса;

3) найти все точки пересечения эллипса с данной окружностью;

4) построить эллипс и окружность.

Решение:

1. Общий вид канонического уравнения эллипса:

Подставим координаты точек А и В в общее уравнение:

К-во Просмотров: 521
Бесплатно скачать Контрольная работа: Элементы алгебры и геометрии