Контрольная работа: Элементы алгебры и геометрии

Задание № 93

Даны координаты точек А, В, С, М:

А (5; 4; 1); В (–1; –2; –2); С (3; –2; 2); М (–5; 5; 4).

1.Найти уравнение плоскости Q, проходящей через точки А, В, С:

= 0;

= 0;

(x – 5)( – 6 – 18) – (y – 4)( – 6 – 6) + (z – 1)(36 – 12) = 0;

– 24(x – 5) + 12(y – 4) + 24(z – 1) = 0;

– 2(x – 5) + (y – 4) + 2(z – 1) = 0;

–2x + 10 + y – 4 + 2z – 2 = 0;

–2x + y + 2z + 4 = 0 – уравнение плоскости Q.

2.Составить каноническое уравнение прямой, проходящей через точку М перпендикулярно плоскости Q:

Подставим координаты точки М (–5; 5; 4) и коэффициенты общего уравнения плоскости Q (–2; 1; 2) в каноническое уравнение прямой:

3.Найти точки пересечения полученной прямой с плоскостью Q и с координатными плоскостями хОу, уОz, xOz: пусть

Где t – некоторый параметр, тогда уравнения прямой можно записать так:

Подставим данные выражения в уравнение плоскости Q и найдем параметр t:

Подставим значение параметра t в уравнения и найдем координаты точки пересечения:

К-во Просмотров: 518
Бесплатно скачать Контрольная работа: Элементы алгебры и геометрии