Контрольная работа: Элементы теории автоматического регулирования

где p = α + jω – произвольная комплексная величина; α и ω – вещественные переменные; f(t) - функция времени, например, изменение во времени напряжения, угла поворота и т.д. В дальнейшем будем называть функцию f(t) оригиналом, а соотношение (1) ее операторным изображением .

Преобразование (1), осуществляемое над функцией f(t) , сокращенно обозначается так:

f(t) F(p) или F(p) =L [f(t) ]. (2)

Эту запись нужно понимать так: от данной функции f(t) можно перейти к ее изображению F(p) и, наоборот, от изображения данной функции F(р) можно перейти к самой функции f(t) .

Формула обратного преобразования:

, (3)

Чтобы понять суть применения операторного метода, можно провести некоторую аналогию между его применением и использованием логарифмов для выполнения сложных вычислений. Использование логарифмов позволяет заменить сложные операции возведения в степень и извлечения корня умножением и делением, а умножение и деление - сложением и вычитанием. По окончании вычислений осуществляется обратный переход от логарифмов к самим величинам.

Здесь также изменяющиеся во времени величины заменяются соответствующими операторными изображениями этих величин. С изображениями выполняются все операции, необходимые для математического исследования АСР. После окончания решения осуществляется обратный переход от изображений к вещественным величинам.

Основные соотношения операторного исчисления сведены в табл. .1. По ним осуществляют прямой и обратный переход.

Чтобы увидеть преимущество решений дифференциальных уравнений при помощи преобразования Лапласа, рассмотрим пример.

Пусть линейная АСР описывается дифференциальным уравнением 2-го порядка:

(4)

Применяем преобразование Лапласа

(5)

Воспользуемся приведенными выше правилами.

(6)

(7)

Таблица 1)

f(t) (оригинал)

F(p) (изображение)

f(t) (оригинал)

F(p) (изображение

а f(t)

а F(p)

pn F(p)

f1 (t) ± f2 (t)

F1 (p) ± F2 (p)

рF(p)

n

Получим операторное изображение дифференциального уравнения при нулевых начальных условиях.

Передаточной функцией элемента или системы называется отношение изображения Лапласа (или операторного изображения) соответствующей выходной величины к изображению Лапласа входной величины. При этом считается, что элемент или система находились при нулевых начальных условиях.

Таким образом, передаточная функция определяется отношением

(8)

Учитывая (7), выражение для передаточной функции можно записать в виде

(9)

При р = 0, т.е. когда нет изменяющихся величин (установившееся состояние системы), передаточная функция вырождается в обычный коэффициент усиления системы. Так, у электронного усилителя передаточная функция К(р) = К.

В АСР степень полинома знаменателя D(p) всегда выше или, в крайнем случае, равна степени полинома числителя Е(р), т.е. всегда n > m.

Корни полинома числителя называют нулями, а знаменателя - полюсами.

Из соотношений (4) - (9) ясно, что передаточную функцию можно получить простой формальной заменой производных дифференциального уравнения символом р в соответствующей степени. Из передаточной функции можно определить выходную величину:

(10)

К-во Просмотров: 194
Бесплатно скачать Контрольная работа: Элементы теории автоматического регулирования