Контрольная работа: Финансовая математика 2
Правило торговца.
Кредит в Z = 15 000 руб. выдан на N = 10 месяцев под i = 10% годовых. Договор предусматривает погашение двумя промежуточными платежами. Первая выплата в сумме R1 = 600 руб. производится через n1 = 6 месяцев, вторая выплата в сумме R2 = 9 000 руб. - через n2 = 9 месяцев. Найти выплату в конце срока кредита.
Решение.
Продолжительность кредита в долях года равна
T =10/12=5/6.
Тогда долг (кредит с процентами) составит 15 000(1 + 0,1⋅0,83) = 16 245.
Интервал времени (в долях года) от момента первого платежа до окончания срока кредита
t1 =(10-6) /12=1/3.
Сумма первого платежа с процентами равна
R1=(1+ i t1) = 600(1+0,1·1/3) =620.
Остаток долга после первого платежа будет равен
Z1 = 16245-620=15625.
Интервал времени (в долях года) от момента второго платежа до окончания срока кредита
t2 =(10-9) /12=1/12.
Сумма второго платежа с процентами равна
R2=(1+ i t2) =9000(1+0,1·1/12) =9075.
Остаток долга будет равен
Z2 = 15625-9075=6550.
Отсюда следует, что в конце срока кредита погашающий платеж равен
R3= 6550 руб.
Таким образом, заемщиком будет выплачена сумма
R1+ R2+R3= 600+9000+6550=16150 руб.
При этом его долг кредитору составляет 16 245 руб.
Задание 2
Клиент получил ссуду Р = 200000 руб. сроком на n = 8 лет под 6% процентов годовых. Погашение кредита производится в конце каждого года равными долями.
Вычислить размер ежегодного платежа и его разбиение на погашение основного долга и погашение процентов. Вычисления по формулам проверить с помощью функций ПЛТ, ОСПЛТ, ПРПЛТ.
Решение.
Клиент должен каждый год выплачивать банку сумму
R=P∙ i/(1-(1+i) - n) =200000∙0,06/(1-(1+0,06) - 8) =32207, 19
Этот ответ можно получить, используя таблицу коэффициентов приведения a(i,k),
--> ЧИТАТЬ ПОЛНОСТЬЮ <--