Контрольная работа: Интеграл дифференциального уравнения

Контрольное задание:

Упражнения

1. Дана последовательность аn =(3n-5)/(4n+1). Установить номер n0 , начиная с которого выполняется неравенство │аn -А │ < 1/500.

Отв. n0 =719.

Найти:

2. lim (3-√х)/(х2 -81).Отв. –1/108.

х→9

3. lim (5х2 -8)/(х3 -3х2 +11).Отв. 0.

х→∞

Проверить непрерывность следующих функций:

4. у=5х/(х3 +8).Отв. При всех х≠–2 функция непрерывна.

5. у=(х2 +4)/ √(х2 -36). Отв. Функция непрерывна при всех значениях

│х│>6.

6. Определить точки разрыва функции у=(8х+2)/(16х2 -1).

Отв . Точки х1 =–1/4 и х2 =1/4.

Задача 1

Найти общий интеграл дифференциального уравнения:

Решение


Выполним разделение переменных, для этого разделим обе части уравнения на :

Проинтегрируем обе части уравнения и выполним преобразования:

Ответ

Задача 2

Проинтегрировать однородное дифференциальное уравнение:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 217
Бесплатно скачать Контрольная работа: Интеграл дифференциального уравнения