Контрольная работа: Интерполирование функций
где L - число значащих цифр после запятой в представлении значений функции.
Необходимо отметить, что формулы Ньютона являются видоизменениямиформулы Лагранжа. Однако в формуле Лагранжа нельзя пренебречь ни одним из слагаемых, так как все они равноправны и представляют многочлены n -й степени. В формулы Ньютона в качестве слагаемых входят многочлены повышающихся степеней, коэффициентами при которых служат конечные разности, разделенные на факториалы. Конечные разности, как правило, быстро уменьшаются, что позволяет в формулах Ньютона пренебречь слагаемыми, коэффициенты при которых становятся малыми. Это обеспечивает вычисление промежуточных значений функции достаточно точно спомощью простых интерполяционных формул.
4. Формула Ньютона с разделенными разностями
Первая и вторая формулы Ньютона предполагают, что узлы интерполирования являются равноотстоящими. Однако, в общем случае функция f (x ) может быть задана таблицей, в которой узлы находятся на произвольном расстоянии друг от друга , где значения hi (i = ) являются различными.
При таких условиях первая и вторая интерполяционные формулы Ньютона неприменимы. В данном случае, для решения задачи интерполяции применяются не конечные, а разделенные разности.
Разделенная разность первого порядка определяется:
Для вычисления разделенных разностей высших порядков используется формула:
Разделенные разности удобно представлять диагональной таблицей, вид которой для n = 4 соответствует табл. 2.
Таблица 2
Интерполяционный многочлен Ньютона, использующий разделенные разности, имеет вид:
где , Пk (x ) = 1.
Представленная формула позволяет повышать точность вычислений постепенно, добавляя разделенные разности более высоких порядков. Следует отметить, что при этом все полученные результаты сохраняются, т.е. не вычисляются заново, а только наращиваются. Это следует из соотношения
Оценка погрешности интерполирования выполняется по формуле
5. Интерполяция сплайнами
Пусть задана таблица значений функции f (xi ) = yi (), в которой они расположены по возрастанию значений аргумента: x 0 < x 1 < … < xn . Чтобы построить кубический сплайн, требуется определить коэффициенты ai 0 , ai 1 , ai 2 , ai 3 , которые задают интерполяционный кубический многочлен
на каждом интервале интерполирования [xi -1 , xi ], .
Таким образом, необходимо определить 4n коэффициентов aij (, ), для чего требуется 4n уравнений. Необходимые уравнения определяются следующими условиями.
1. Условия непрерывности функции:
2. Условия непрерывности 1-х и 2-х производных функции:
3. Граничные условия:
Часто используются граничные условия видаПолучаемый при этом сплайн называется естественным кубическим сплайном.