Контрольная работа: Исследование экономико-математических моделей
Графически – Х = 12,9; В = 1409.
Паутинообразным методом: Х = 12,871; В = 1408,40. (рис. 1.3):
Рис. 1.3.
Методом Поиска решения (рис. 1.4, рис. 1.5):
Рис. 1.4.
Поиск решения | |||
b | b1 | b0 | |
8,1364 | -351,37 | 4583,9 | 1408,73517 |
0 | 85,182 | 312,01 | 1408,73517 |
12,87508118 | 12,87508 | 0,0000000 | Целевой амбарчик |
Зминюеми амбарчика |
Рис. 1.5.
Методом Поиска решения: Х = 12,875; В = 1408,735.
За 3-я методами видим, что 3-й метод – метод Поиска решения точнее всего, то есть точка равновесия имеет координаты Х = 12,875; В = 1408,735.
Построим точечную графику статистических данных, линии регрессии и ее доверительной зоны.
Рис. 1.6.
Выводы
1. В результате расчетов получены модели Y1 = 8,1364X2 – 351,37Х +4583,9 и Y2 = 85,182X + 312,01. Анализируя параметры моделей возможно сделать следующие выводы, что поскольку коэффициент регрессии положительный b1, то это свидетельствует о том, что направление связи между X и Y прямой, то есть при росте Х значения Y тоже будут увеличиваться, и наоборот поскольку коэффициент регрессии відємний b1, то это свидетельствует о том, что направление связи между X и Y обратной, то есть при росте Х значения Y будут понижаться.
2. Линейный коэффициент корреляции 0,9911 и коэффициент детерминации R2=0,9823. Значение коэффициенту корреляции свидетельствует о том, что между факторами существует очень сильная прямая связь. Значение коэффициенту детерминации показывает, что на 98,23% вариация Y2 зависит от X и на 1,77% от факторов, которые не вошли в модель.
3. Расчеты за критерием Фишера F=499 и Fкр.=5,11 подтвердили адекватность модели данным задачи.
4. По критерию Стьюдента, была проведенная проверка значимости параметров модели с надежностью 95%. Поскольку первое значение t – статистики больше, чем критическое значение, то можно сделать вывод, что полученные параметры являются значимыми и для генеральной совокупности параметры уравнения линии регрессии отличаются от 0.
6. По критерию Стьюдента была проведенная проверка значимости линейного коэффициента корреляции с надежностью 95%. Поскольку значение tr – статистики больше, чем критическое значение, то можно сделать вывод, что в генеральной совокупности между факторами существует связь, то есть и коэффициент регрессии статистически значим и модель является адекватной.
Задание №2
Производственная фирма выпускает продукцию с применением труда рабочих и основных средств производства.
Х1 (основные средства предприятия) | Х2 |
В (объем выпущенной продукции) |
50+N | 90+K | 152+10*N/K |
60+N | 100+K | 172+10*N/K |
70+N | 110+K | 192+10*N/K |
80+N | 120+K | 213+10*N/K |
90+N | 130+K | 232+10*N/K |
100+N | 140+K | 253+10*N/K |
110+N | 150+K | 275+10*N/K |
120+N | 160+K | 293+10*N/K |
130+N | 170+K | 314+10*N/K |
140+N | 180+K | 334+10*N/K |
150+N | 190+K | 354+10*N/K |
Построить производственную мультипликативную регрессию, оценив ее параметры.
Проверить адекватность построенной модели выходным данным.
Сделать экономический анализ параметров производственной функции.
Определить прогнозное значение выпуска при.