Контрольная работа: Исследование операций
x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0; x7 >= 0; x8 >= 0; x9 >= 0; R1 >= 0; R2 >= 0; R3 >= 0; R4 >= 0
Существуют базисные и небазисные переменные.
Включающиеся переменные называются небазисными в данный момент переменными, которые включаются в состав базиса на следующей итерации.
Исключаемые - базисные переменные, которые на следующей итерации подлежат исключению.
На следующем шаге необходимо подставить значение в целевую функцию:
Таким образом, задача в стандартной форме имеет следующий вид:
x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0; x7 >= 0; x8 >= 0; x9 >= 0; R1 >= 0; R2 >= 0; R3 >= 0; R4 >= 0
Перенесем члены целевой функции влево
z -5x1-1x2 = 0
Далее задача решается обычным симплекс-методом
Шаг 0. Используя линейную модель стандартной формы, определяют начальное допустимое базисное решение путем приравнивания к нулю n- m небазисных переменных.
Шаг 1. Из числа небазисных переменных (равных нулю) выбирается включаемая в новый базис переменная, увеличение которой обеспечивает больший по сравнению с остальными рост целевой функции (условие оптимальности). Если такой переменной нет, вычисления прекращаются и полученное решение является оптимальным. В противном случае, переходят к шагу 2.
Шаг 2. Из числа переменных текущего базиса выбирается исключаемая переменная, значение которой быстрее всех стремится к нулю при переходе к новой смежной точке (становящаяся небазисной и равной нулю при введении в базис новой переменной - условие допустимости).
Шаг 3. Определяется новое базисное решение (соответствующее новой смежной точке, т.е. новому составу базисных и небазисных переменных) и осуществляется переход к шагу 1.