Контрольная работа: Кинетика действия ферментов
Для образования АТР необходима AG около 250 мВ. Примерно такая величина ТЭП и создается на мембранах митохондрий и прокариотических клеток, хотя вклад каждой из составляющих различен. Например, у ацидофильных бактерий ТЭП практически полностью состоит из ЛрН, а у алкалофилов – из Л<р.
Важно отметить, что АТРазный комплекс может не только утилизировать ТЭП с образованием АТР, но и формировать его за счет гидролиза АТР, осуществляя таким образом взаимное превращение этих двух форм энергии.
Первичные и вторичные генераторы ТЭП
Первичные генераторы используют энергию света или химических связей субстратов для формирования ТЭП. АТР в этих процессах не участвует. К первичным генераторам ТЭП относятся:
дыхательная цепь, содержащая от 1 до 3 протонных насосов;
фотосинтетическая цепь, содержащая 1–2 протонных насоса;
бактериродопсин галофильных архебактерий;
системы экскреции кислых продуктов брожения у бактерий в неионизированной форме.
Вторичные генераторы используют энергию АТР для формирования ТЭП. Они представляют собой Н+ -АТФазы, основной функцией которых является не синтез, а гидролиз АТР. Такие АТРазы характерны для цитоплазматической мембраны анаэробных бактерий, плаз-малеммы клеток эукариот, мембраны вакуолей растений и грибов.
Таким образом, основные пути трансформации энергии в клетке можно суммировать в виде схемы.
Энергетический заряд и энергетическая эффективность роста
Количество АТР, образующегося в разных метаболических путях, различается во много раз. Так, при катаболизме глюкозы по гликолитическому пути с последующим включением цикла трикарбоновых кислот и дыхания образуется 38 моль АТР на моль глюкозы.
У некоторых бактерий в дыхательной цепи существует лишь два пункта сопряжения и количество образованного АТР составит 26 моль на моль глюкозы. Сам по себе гликолиз в анаэробных условиях приводит к образованию лишь 2 молей АТР на моль глюкозы.
Не только общее количество синтезированного АТР, но и расход АТР на образование единицы биомассы сильно зависит от типа метаболизма. Так, например, при выращивании бактерий на среде с глюкозой 1 моль АТР обеспечивает образование 27 г. биомассы, тогда как на среде с С02 1 моль АТР – только 5 г биомассы. При различных типах анаэробных брожений выход биомассы на моль синтезированного АТР все же достаточно постоянен и составляет около 10. Этот показатель получил обозначение YATp и используется для характеристики роста наряду с экономическим коэффициентом.
Определенная часть клеточной энергии затрачивается на процессы, не связанные непосредственно с ростом. Их называют процессами поддержания жизнедеятельности. Затраты на поддержание жизнедеятельности составляют 10–20% всех энергетических расходов.
Важное значение имеет не только абсолютное количество АТР в клетке, но и соотношение компонентов аденилатной системы, так как АТР, ADP и AMP являются мощными регуляторами метаболических процессов.
Д. Аткинсон ввел понятие энергетического заряда, как меры «заполнения» аденилатной системы макроэргами.
Теоретически ЭЗ может варьировать от 0 до 1, однако реально в экспоненциально растущих клетках он составляет 0,8–0,9, а при снижении его величины до 0,5 клетка погибает.
Основные типы сопряжения энергетических и конструктивных процессов
Первоначально биологи подразделяли все живые организмы по типу питания на две группы: автотрофови гетеротрофов.
В настоящее время применяется более детальная классификация, основанная на указании природы источника энергии и природы источника углерода.
Таким образом, растения следует отнести к фото-лито-автотрофам, а животных – к хемооргана – гетеротрофам. Всего же при сочетании этих характеристик возможны восемь основных типов соотношений между энергетическими и конструктивными процессами.
Некоторые организмы способны осуществлять только одни из перечисленных типов питания, тогда как другие могут переключаться с одного типа питания на другой. Последние организмы называют факультативными.
Таблица 1.Основные типы питания
Источник энергии | Донор электронов | Источник углерода | Тип питания | Организмы-представители | ||||
Неорганические вещества | С02 | Хемолитоавтотрофия | Прокариоты | |||||
Химические | Органич. вещества | Хемолитогетеротрофия | Прокариоты | |||||
реакции | Органические вещества | С02 | Хеморганоавто-трофия | Прокариоты | ||||
Органич. вещества | Хемоорганоге-теротрофия | Животные и многие прокариоты | ||||||
Источник энергии | Донор электронов | Источник углерода | Тип питания | Организмы-представители | ||||
Неорганические вещества | со2 | Фотолитоавтотрофия | Растения, цианобакте-рии, пурпурные и зеленые бактерии | |||||
Свет | Органич. вещества | Фотолитогетеротрофия | Прокариоты | |||||
Органические вещества | со2 | Фотоорганоавтотрофия | Прокариоты | |||||
Органич. вещества | Фотоорганогетеротрофия | Прокариоты |