Контрольная работа: Кривые второго порядка. Квадратичные формы

Пример 2.

Определить знакоопределенность следующих квадратичных форм.

1)

Þ

т. е. квадратичная форма является положительно определенной.


2)

Þ

т. е. квадратичная форма является отрицательно определенной.

3)

Þ

данная квадратичная форма не является знакоопределенной, так как она равна 0 во всех точках прямой х1 = –х2 , а не только в начале системы координат.

Когда n > 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.

Главными минорами квадратичной формы называются миноры:


то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.

3. Критерий положительной и отрицательной определенности

Критерий положительной определенности (критерий Сильвестра)

Для того чтобы квадратичная форма j(х) = хТ Ах была положительно определенной, необходимо и достаточно, что все главные миноры матрицы А были положительны, то есть:

М1 > 0, M2 > 0, …, Mn > 0.

Критерий отрицательной определенности

Для того чтобы квадратичная форма j(х) = хТ Ах была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного – отрицательны, то есть:

М1 < 0, M2 > 0, М3 < 0, …, (–1)n Mn > 0.

Пример 3.

При каких значениях а и в квадратичная форма будет положительно определенной?

j (х1 , х2 , x3 ) =

Решение.

К-во Просмотров: 215
Бесплатно скачать Контрольная работа: Кривые второго порядка. Квадратичные формы