Контрольная работа: Кривые второго порядка. Квадратичные формы
Пример 2.
Определить знакоопределенность следующих квадратичных форм.
1)
Þ
т. е. квадратичная форма является положительно определенной.
2)
Þ
т. е. квадратичная форма является отрицательно определенной.
3)
Þ
данная квадратичная форма не является знакоопределенной, так как она равна 0 во всех точках прямой х1 = –х2 , а не только в начале системы координат.
Когда n > 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.
Главными минорами квадратичной формы называются миноры:
то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.
3. Критерий положительной и отрицательной определенности
Критерий положительной определенности (критерий Сильвестра)
Для того чтобы квадратичная форма j(х) = хТ Ах была положительно определенной, необходимо и достаточно, что все главные миноры матрицы А были положительны, то есть:
М1 > 0, M2 > 0, …, Mn > 0.
Критерий отрицательной определенности
Для того чтобы квадратичная форма j(х) = хТ Ах была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного – отрицательны, то есть:
М1 < 0, M2 > 0, М3 < 0, …, (–1)n Mn > 0.
Пример 3.
При каких значениях а и в квадратичная форма будет положительно определенной?
j (х1 , х2 , x3 ) =
Решение.