Контрольная работа: Математическая логика
1) не сохраняющую ноль;
2) не сохраняющую единицу;
3) нелинейную;
4) немонотонную;
5) несамодвойственную.
Примерами функционально полных систем являются, например, системы:
.
Все названные выше классы функций обладают свойством: любая ФАЛ, полученная с помощью операции суперпозиции и подстановки из функций одного класса, обязательно будет принадлежать этому же классу.
Полная система ФАЛ называется базисом ,если теряется полнота Ф при удалении хотя бы одной функции системы.
К базису относятся системы функций:
базис 1: ;
базис 2: ;
базис 3: ;
базис 4: функция Шеффера: x 1 | x 2 ;
базис 5: функция Пирса (Вебба): x 1 ↓ x 2 .
Базис 1 – избыточный, базисы 4 и 5 – минимальные (удаление хотя бы одной функции превращает систему ФАЛ в неполную).
При исследовании полноты систем функций удобно пользоваться таблицей, которую называют критериальной . Эта таблица имеет пять столбцов, каждый из которых соответствует одному из пяти классов, а строки таблицы соответствуют функциям исследуемой системы. На пересечении строки таблицы, соответствующей функции f , и столбца, соответствующего классу К , ставится знак плюс, если функция , и минус, если . Система функций полна тогда и только тогда, когда в каждом столбце содержится хотя бы один знак минус.
Пример.
Является ли система булевых функций полной? Если является, то выписать все возможные базисы.
Рассмотрим функцию .
1. Исследуем ее принадлежность к классу К 0 :
.
Следовательно, .
2. Исследуем принадлежность функции к классу К 1 :
.
Следовательно, .
3. Установим, является ли функция f 1 линейной. Используем метод неопределенных коэффициентов. Предположим, что функция линейная и, следовательно, представима в виде полинома Жегалкина первой степени:
.
Найдем коэффициенты , исходя из предположения линейности этой функции. Зафиксируем набор 000: