Контрольная работа: Математические уравнения и функции
5. Известно что высоты треугольника пересекаются в одной точке Р. Уравнение высоты СК найдено, выведем аналогично высоту BD проходящую через точку В перпендикулярно вектору
Координаты точки Р найдем как решение системы уравнений:
х=11 у=23
6. Длину высоты hc будем ее искать как расстояние от точки С до прямой АВ. Эта прямая проходит через точку А и имеет направляющий вектор .
Теперь воспользовавшись формулой
Подставляя в нее координаты точки С(0,3)
Задание 2
Даны векторы Доказать, что образуют базис четырехмерного пространства, и найти координаты вектора «в» в этом базисе.
Решение:
1. Докажем, что подсистема линейно независима:
Из четвертого уравнения имеем , что , тогда из первого, второго и третьего следует, что . Линейная независимость доказана.
Докажем, что векторы можно представить в виде линейных комбинации векторов .
Очевидно,
Найдем представление через .
Из четвертого уравнения находим и подставляем в первые три
Получили , что данная система векторов не может называться базисом!