Контрольная работа: Математический расчет объема выпуска продукции
X2=0
X4=0
X9=0
X1=50
X3=30
X5=190
X6=90
X7=0
X8=50
Решение опорное, но не оптимальное.
Разрешающий столбец № 2 (вектор А2 так как только у него есть отрицательная оценка плана)
Найдем разрешающий столбец:
БП | C1=25 | С2=20 | C3=50 | C4=0 | C5=0 | C6=0 | C7=0 | C8=0 | C9=0 | |||
Сб | Вi | A1 | А2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | ||
1 | A1 | 25 | 20 | 1 | 0 | 0 | 0,2 | 0 | 0 | 0 | -0,6 | -1 |
2 | A5 | 0 | 210 | 0 | 0 | 0 | -0,8 | 1 | 0 | 0 | 0.4 | -3 |
3 | A6 | 0 | 95 | 0 | 0 | 0 | -0,2 | 0 | 1 | 0 | 0,1 | 2/3 |
4 | A7 | 0 | 30 | 0 | 0 | 0 | -0,2 | 0 | 0 | 1 | 0.6 | 1 |
5 | A2 | 20 | 50 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
6 | A3 | 50 | 30 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
∆j=W(j)-cj | 3000 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 5 | 25 |
соответствует строке №5 и вектору А8
Меняем А8—А5
Находим пробное решение, для этого все свободные переменные приравниваем к 0, а базисные к bi
Свободные переменные | Базисные переменные |
X4=0 X8=0 X9=0 |
X1=20 X2=50 X3=30 X5=210 X6=95 X7=30 |
Решение ОПОРНОЕ и ОПТИМАЛЬНОЕ! Все коэффициенты в строке ∆j≥0
Для получения максимальной прибыли необходимо выпускать товар в следующем ассортименте: