Контрольная работа: Математичні моделі задач лінійного програмування

1

3

1

1

70

2

80

0

100

u2 = -3 а3 = 200

4

1

[+] 10

2

2

3

0

[-] 190

u3 = -3 vj v1 =1 v2 =4 v3 =1 v4 =4 v5=5 V6 =3

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, щоu1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(А1B6): 0 + 3 = 3 >0;

Вибираємо максимальну оцінку вільної клітини (А1B6): 0

Для цього в перспективну клітку (А3B2) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А1B2) = 110. Додаємо 110 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 110 з Хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Ai Bj ui
b1 = 100 b2 = 120 b3 = 90 b4=70 b5=80 B6=290
а1 = 300

1

100

4

1

90

5

К-во Просмотров: 349
Бесплатно скачать Контрольная работа: Математичні моделі задач лінійного програмування