Контрольная работа: Механика сплошной среды

Материальный континуум обладает свойством, называемым массой. Суммарная масса некоторой части сплошной среды, занимающей в момент t объем пространства V, выражается интегралом

(1.1)

где - непрерывная функция координат, называемая плотностью. Закон сохранения массы, утверждает, что масса выделенной части среды остается постоянной и, следовательно, материальная производная от (1.1) равна нулю. Если в формуле (4.52) положить P ' ij . ( x , t ) ss р (х, 0, то получим выражение для скорости изменения массы т

(1.2)

Поскольку это равенство верно для произвольного объема V, подинтегральное выражение само должно обращаться в нуль, т. е.

или (1.3)

Это уравнение называется уравнением неразрывности (или непрерывности). Раскрывая оператор материальной производной, его можно написать в другой равнозначной форме


, или (1.4)

В несжимаемой среде плотность массы каждой частицы не зависит от времени, т. е. , и уравнение (1.3) принимает вид

, или . (1.5)

Поле скорости в несжимаемой среде можно поэтому представить выражением

или , (1.6)

где функция называется векторным потенциалом .

Уравнение неразрывности можно записывать в лагранжевой, или материальной, форме. Для сохранения массы требуется, чтобы выполнялось уравнение

. (1.7)

Здесь оба интеграла взяты по одним и тем же частицам, т. е. V - это объем, который теперь занимает среда, заполнявшая в момент t = 0 объем . Используя (4.1) и (4.38), интеграл в правой части (1.7) можно преобразовать следующим образом:

(1.8)

Соотношение (1.8) должно иметь силу для произвольно выбранного объема , и поэтому

(1.9)

Это означает, что произведение не зависит от времени, так как объем V произволен, т. е. что

(1.10)

Уравнение (1.10) является лагранжевой дифференциальной формой уравнения неразрывности.

2. Теорема об изменении количества движения. Уравнения движения

Уравнения равновесия

На рис. 2.1 изображен движущийся объем сплошной среды V в момент t. На него действуют массовые силы с плотностью распределения . На каждом бесконечно малом элементе поверхности, ограничивающей рассматриваемый объем, действует вектор напряжения . Во всей области, занятой средой, определено поле скоростей . Общее количество движения системы масс, заполняющих объем V, определяется интегралом

. (2.1)

Основываясь на втором законе Ньютона, теорема об изменении количества движения утверждает, что скорость изменения со временем количества движения некоторой части континуума равна результирующей сил, действующих на рассматриваемую область. Если внутренние силы, действующие между частицами данного объема (рис. 2.1), подчиняются третьему закону Ньютона о действии и противодействии, то теорема об изменении количества движения для этой системы масс выражается уравнением

,

или (2.2)

.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 211
Бесплатно скачать Контрольная работа: Механика сплошной среды